Strona 1 z 1

Tw. Lagrange'a - nierówność

: 15 lis 2016, 19:40
autor: edwin20
Uzasadnij nierówność, korzystając z tw. Lagrange'a:
\(\sin x \le |x|\)
\(x \in R\)

Re: Tw. Lagrange'a - nierówność

: 15 lis 2016, 21:12
autor: Panko
weźmy przedział \(I=\) \([-x,x]\) \(\\) ,\(x \in R\)
\(f(x)= \sin x\) , ciągła w \(I\)
wtedy \(\exists\)\(x_1 \in (-x,x)\) : \(\frac{ \sin x- \sin (-x)}{x-(-x)} = \cos (x_1)\)
czyli \(\\) \(\sin x=x \cdot \cos (x_1)\) stąd \(\\) \(| \sin x|=|x| \cdot |\cos (x_1) |\)

oraz \(\\) \(| \cos (x_1)| \le 1\)

stąd\(\\) \(| \sin x|=|x| \cdot | \cos (x_1)| \le |x|\)

ostatecznie : \(\sin x \le | \sin x| \le |x|\)