Oblicz granicę (Suma ciągu arytmetycznego)

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Awatar użytkownika
Szymonix1818
Dopiero zaczynam
Dopiero zaczynam
Posty: 13
Rejestracja: 04 lut 2024, 19:51
Podziękowania: 4 razy
Otrzymane podziękowania: 1 raz
Płeć:

Oblicz granicę (Suma ciągu arytmetycznego)

Post autor: Szymonix1818 »

Oblicz granicę \(\Lim_{x\to \infty } \frac{1+6+11+...+(5n-4)}{3+7+11+...+(4n-1)} \)

Z tego co wiem muszę skorzystać z sumy ciągów.
L- licznik
M-mianownik
\(L = 1+6+11+...+(5n-4) = \frac{2+(n-1)5}{2} \cdot n = \frac{5n^2 - 3}{2} \)
\(M= 3+7+11+...+(4n-1) = \frac{6+(n-1)4}{2} \cdot n = 2n^2 +1 \)
\(\Lim_{x\to \infty } \frac{ \frac{5n^2 - 3}{2}}{2n^2 +1} = \Lim_{x\to \infty } \frac{n^2( \frac{5- \frac{3}{n^2} }{2}) }{n^2(2 + \frac{1}{n^2} )} =\)
Teraz liczby \(\frac{-3}{n^2}\) oraz \( \frac{1}{n^2}\) dążą do 0 więc zostaje nam (już bez lim bo nie mamy\( n\) żadnego )
\( \Lim_{x\to \infty } \frac{n^2( \frac{5- \frac{3}{n^2} }{2}) }{n^2(2 + \frac{1}{n^2} )} = \frac{ \frac{5}{2} }{2} = \frac{5}{2} \cdot \frac{1}{2} =1,25\)

Sprawdzi ktoś czy dobrze.
Pozdrawiam
Awatar użytkownika
Jerry
Expert
Expert
Posty: 3807
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 53 razy
Otrzymane podziękowania: 2054 razy

Re: Oblicz granicę (Suma ciągu arytmetycznego)

Post autor: Jerry »

Szymonix1818 pisze: 05 lut 2024, 13:45 \(L = \ldots = \frac{2+(n-1)5}{2} \cdot n = \frac{5n^2 - 3}{2} \)
\(M= \ldots = \frac{6+(n-1)4}{2} \cdot n = 2n^2 +1 \)
Powinno być:
\[L = \ldots = \frac{2+(n-1)5}{2} \cdot n = \frac{5n^2 - 3\color{red}{n}}{2} \\
M= \ldots = \frac{6+(n-1)4}{2} \cdot n = 2n^2 +\color{red}{n} \]
Nie miało to wpływu na ostateczną, poprawną, odpowiedź, ale jest błędem obniżającym punkty za rozwiązanie zadania.

Pozdrawiam
Awatar użytkownika
Szymonix1818
Dopiero zaczynam
Dopiero zaczynam
Posty: 13
Rejestracja: 04 lut 2024, 19:51
Podziękowania: 4 razy
Otrzymane podziękowania: 1 raz
Płeć:

Re: Oblicz granicę (Suma ciągu arytmetycznego)

Post autor: Szymonix1818 »

Tak zgadza się źle przepisałem z kartki.
Dziękuje za Odpowiedź

Pozdrawiam
ODPOWIEDZ