kevinroland pisze: ↑14 kwie 2022, 09:09
Dany jest prostokąt o bokach długości 2 cm i 7 cm. Oblicz pole prostokąta podobnego do niego, wiedząc że jego
obwód jest równy 24 cm.
kevinroland pisze: ↑14 kwie 2022, 09:09
Dany jest prostokąt o bokach długości 2 cm i 7 cm. Oblicz pole prostokąta podobnego do niego, wiedząc że jego
obwód jest równy 24 cm.
Proszę... o pomoc.
We can begin by using the fact that similar figures have proportional side lengths. Let the length of one side of the new rectangle be x cm. Since the new rectangle is similar to the original rectangle, we can write:
\({x\over2} = {x + 7\over7}\)
We can solve for x by cross-multiplying:
\(7x = 2(x + 7)\\
7x = 2x + 14\\
5x = 14\\
x = 2.8\)
So, the length of the longer side of the new rectangle is \(2.8 + 7 = 9.8\) cm. The area of the new rectangle is:
ann77 pisze: ↑08 kwie 2023, 10:31
... we can write: \({x\over2} = {x + 7\over7}\)
Why, it is inconsistent with the content of the task! It would be correct:
\(\begin{cases}{x\over2} = {y\over7}\\2x+2y=24\end{cases}\So {x\over2} = {12-x\over7}\)
ann77 pisze: ↑08 kwie 2023, 10:31
We can begin by using the fact that similar figures have proportional side lengths. Let the length of one side of the new rectangle be x cm. Since the new rectangle is similar to the original rectangle, we can write:
\({x\over2} = {x + 7\over7}\)
We can solve for x by cross-multiplying:
\(7x = 2(x + 7)\\
7x = 2x + 14\\
5x = 14\\
x = 2.8\)
So, the length of the longer side of the new rectangle is \(2.8 + 7 = 9.8\) cm. The area of the new rectangle is: