Prawdopobieństwo błędu I rodzaju / sprawdzanie testem

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij Thank icon

Prawdopobieństwo błędu I rodzaju / sprawdzanie testem

Postprzez Hubert_Rurek » 14 Cze 2019, 18:43

Witam

Moja wiedza statystyczna nie jest na zbyt wysokim poziomie dlatego chciałbym się zwrócić o pomoc w rozwiązaniu 2 zadań ze statystyki. Z góry dziękuję za pomoc i poświęcony czas :)

Zadanie 1
Właściciel terenu położonego w pobliżu nieczynnej koksowni gwarantował, że średnia zawartość ołowiu w powierzchniowej warstwie gleby nie przekracza 0,10\, ppm. Inwestor, który planował kupić ten teren pod budowę bloku mieszkalnego polecił sprawdzić 16 losowo i niezależne wybranych próbek gleby (10 g suchej masy każda) i otrzymał w nich średnią zawartość ołowiu 0,11 ppm, z odchyleniem standardowym 0,02 ppm. Przy założeniu, że zawartość ołowiu w glebie przy tych stężeniach ma rozkład normalny, ustal, czy ta gwarancja jest uczciwa. Przedstaw swą decyzję i prawdopodobieństwo popełnienie błędu I rodzaju i podaj jego zakres.

Zadanie 2
Wybrano 11 par poletek wiązanych na łące i przeprowadzono doświadczenie polegające na dodaniu środka owadobójczego na jednym z poletek w każdej parze, pozostawiając drugie poletko w parze jako kontrolne. Poniżej podano uzyskane wyniki, Wyniki te są wyrażone suchą masą roślinności naziemnej w granach na poletku z zabiegiem X1 i poletku kontrolnym X2. Odpowiednim testem sprawdź, czy środek owadobójczy ma wpływ na wysokość plonu.

X1: 821; 655; 915; 540; 431; 1050; 408; 408; 724; 795; 928
X2: 810; 642; 890; 540; 439; 1020; 388; 403; 730; 780; 920
Hubert_Rurek
Witam na forum
Witam na forum
 
Posty: 3
Dołączenie: 14 Cze 2019, 18:29
Płeć: On
Otrzymane podziękowania: 0

Postprzez panb » 14 Cze 2019, 20:31

ad 1.
Liczymy wartość statystyki [math]
W tablicach rozkładu normalnego szukamy wartości 2 jest to 0,97725. Stąd 1-0,97725=0,02275
Ponieważ testujemy hipotezę [math] przeciwko [math] (obszar dwustronny), więc obliczoną wyżej wartość należy pomnożyć przez 2. Dostajemy p=0,0455. Oznacza to. że:

    jeśli przyjmiemy prawdopodobieństwo popełnienia błędu I rodzaju [math] , to hipotezę należy odrzucić co oznacza, że gwarancja właściciela jest niewiarygodna.

    jeśli przyjmiemy prawdopodobieństwo popełnienia błędu I rodzaju [math] , to nie ma podstaw do odrzucenia hipotezy co oznacza, że gwarancja właściciela jest wiarygodna.

P.S. Ta wartość obliczana na podstawie danych to p-wartość (ang. P-value). Jest to prawdopodobieństwo, że zależność jaką zaobserwowano w losowej próbie z populacji mogła wystąpić przypadkowo, wskutek losowej zmienności prób, choć w populacji wcale nie występuje.
Awatar użytkownika
panb
Expert
Expert
 
Posty: 3135
Dołączenie: 26 Kwi 2010, 22:54
Miejscowość: Nowiny Wielkie
Płeć: On
Otrzymane podziękowania: 1066

Postprzez panb » 14 Cze 2019, 21:21

W zadaniu 2 brak poziomu ufności [math].
Co prawda wartość statystyki wychodzi tak mała, że można stwierdzić, że środek owadobójczy zadziałał, bo przy (2-1)(11-1)=10 stopniach swobody najmniejsza wartość krytyczna testu[math] jest równa 2,156.

Obliczenia w Excelu załączam poniżej:
tabela.png
Nie posiadasz wymaganych uprawnień, by zobaczyć pliki załączone do tej wiadomości.
Awatar użytkownika
panb
Expert
Expert
 
Posty: 3135
Dołączenie: 26 Kwi 2010, 22:54
Miejscowość: Nowiny Wielkie
Płeć: On
Otrzymane podziękowania: 1066

Postprzez Hubert_Rurek » 14 Cze 2019, 22:06

Bardzo dziękuję za odpowiedź :)
Hubert_Rurek
Witam na forum
Witam na forum
 
Posty: 3
Dołączenie: 14 Cze 2019, 18:29
Płeć: On
Otrzymane podziękowania: 0


Powróć do Pomocy! - statystyka, prawdopodobieństwo



Kto jest na forum

Użytkownicy przeglądający to forum: Brak zarejestrowanych użytkowników oraz 1 gość