Zbieżność szeregu

Granice, pochodne, całki, szeregi
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Janek9003
Dopiero zaczynam
Dopiero zaczynam
Posty: 20
Rejestracja: 19 lut 2018, 17:06
Podziękowania: 13 razy
Płeć:

Zbieżność szeregu

Post autor: Janek9003 » 11 mar 2019, 17:40

\(\sum_1^∞\frac{\sqrt{n}\cos\sqrt{n}}{n^{4}}\)
Ma wyjść zbieżny.

Awatar użytkownika
eresh
Mistrz
Mistrz
Posty: 13721
Rejestracja: 04 cze 2012, 13:41
Otrzymane podziękowania: 8075 razy
Płeć:

Post autor: eresh » 11 mar 2019, 17:48

\(\frac{\sqrt{n}\cos\sqrt{n}}{n^4}\leq\frac{\sqrt{n}}{n^4}=\frac{1}{n^{3,5}}\\\)
\(\sum\frac{1}{n^{3,5}}\) jest zbieżny (szereg harmoniczny), na mocy kryterium porównawczego nasz również jest zbieżny