VI próbna matura 2012 z zadania.info

O wszystkim, co jest związane z maturą, linki do zadań, komentarze i inne przemyślenia.
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij

VI próbna matura była:

Podstawa - łatwa
2
4%
Podstawa - normalna
11
21%
Podstawa - trudna
3
6%
Rozszerzenie - łatwa
1
2%
Rozszerzenie - normalna
15
29%
Rozszerzenie - trudna
20
38%
 
Liczba głosów: 52

Awatar użytkownika
supergolonka
Moderator
Moderator
Posty: 1741
Rejestracja: 06 mar 2008, 11:53
Otrzymane podziękowania: 23 razy
Płeć:

VI próbna matura 2012 z zadania.info

Post autor: supergolonka » 14 kwie 2012, 07:44

Właśnie zamieściliśmy arkusze VI próbnej matury.
http://www.zadania.info/n/4275390
Do jutra (15 kwietnia) do godz. 16 wszystkie posty na temat zadań i rozwiązań zadań z tych arkuszy będą usuwane.
Jeżeli macie wątpliwości co do poprawności treści zadań to piszcie na
supergolonkaMALPAzadania.info

KGondziu
Witam na forum
Witam na forum
Posty: 1
Rejestracja: 17 lut 2012, 14:21
Płeć:

Re: VI próbna matura 2012 z zadania.info

Post autor: KGondziu » 15 kwie 2012, 11:50

naprzeciwko piszemy łącznie :)

Awatar użytkownika
supergolonka
Moderator
Moderator
Posty: 1741
Rejestracja: 06 mar 2008, 11:53
Otrzymane podziękowania: 23 razy
Płeć:

Rozwiązania zadań

Post autor: supergolonka » 15 kwie 2012, 15:55

Rozwiązania zadań:
Podstawa
Rozszerzenie

rlk120
Dopiero zaczynam
Dopiero zaczynam
Posty: 15
Rejestracja: 17 gru 2011, 21:13
Płeć:

Post autor: rlk120 » 15 kwie 2012, 18:49

Przyznam, że całkiem rozłożyło mnie zadanie z prawdopodobieństwa w arkuszu rozszerzonym :O

kokosz90
Witam na forum
Witam na forum
Posty: 3
Rejestracja: 12 wrz 2010, 21:33

Re: VI próbna matura 2012 z zadania.info

Post autor: kokosz90 » 15 kwie 2012, 19:44

Pro po właśnie tego zadania z prawdopodobieństwem....

Czemu nie możemy po prostu wybrać \({ 7 \choose 5 }\) jako listów, które umieścimy w 5 skrzynkach (tak aby w każdej był 1), oczywiście gdzie jest \(5!\) takich możliwości, a pozostałe dwa rozmieścimy na \(5^{2}\) sposobów ?

To by dawało \({ 7\choose 5 } \cdot 120 \cdot 25\) przy takiej samej omedze (co oczywiście daje inny wynik końcowy)

wawrys93
Dopiero zaczynam
Dopiero zaczynam
Posty: 10
Rejestracja: 06 maja 2010, 13:31

Re: VI próbna matura 2012 z zadania.info

Post autor: wawrys93 » 15 kwie 2012, 20:01

przyłaczam sie do pytania związanego z prawdopodobieństwem

Awatar użytkownika
supergolonka
Moderator
Moderator
Posty: 1741
Rejestracja: 06 mar 2008, 11:53
Otrzymane podziękowania: 23 razy
Płeć:

Post autor: supergolonka » 15 kwie 2012, 20:13

Przy takim liczeniu wiele sytuacji liczysz podwójnie:
Np. taka sytuacja:
I: 1,2
II: 3,4
III:5
IV: 6
V:7
liczysz to np. tak: wybierasz 1,3,5,6,7 licząc \({7\choose 5}\), a potem dobierasz 2 i 4. Ale dokładnie to samo liczysz wybierając najpierw 2,3,5,6,7 a potem dobierając 1 i 4.

OBIBOK
Dopiero zaczynam
Dopiero zaczynam
Posty: 12
Rejestracja: 04 sty 2012, 21:50
Płeć:

Re: VI próbna matura 2012 z zadania.info

Post autor: OBIBOK » 15 kwie 2012, 23:31

Zgadzam się, i dlatego odjąłem od tego wyniku {7\choose 5} \cdot 5!, nie wiem czy dobrze rozumuję, ale według mnie to eliminuje sytuację opisaną przez Ciebie, ponieważ te 2 pozostałe listy muszą trafić do konkretnych skrzynek, jeśli sytuacja ma się powtarzać. Możesz mi wskazać błąd w moim toku rozumowania?

szymo1993
Witam na forum
Witam na forum
Posty: 4
Rejestracja: 15 kwie 2012, 23:27
Płeć:

Re: VI próbna matura 2012 z zadania.info

Post autor: szymo1993 » 15 kwie 2012, 23:52

Również mam wątpliwości co do zadania z prawdopodobieństwem a mianowicie zrobilem to w taki sposób:
Omege policzylem identycznie, oraz pierwszy przypadek gdy losujemy 3 listy do jednej skrzynki wyszło 4200 możliwości.
Drugi przypadek gdy dwie skrzynki zawierają dwa listy zrobiłem w następujący sposób:
wybieram 2 listy spośród 7 \({ 7 \choose 2 }\) i jedną skrzynkę spośród 5 \({5 \choose 1 }\) i dwa listy spośród pozostałych 5 \({5 \choose 2}\) i jedną skrzynkę spośród pozostałych 4 \({4 \choose 1}\)i resztę listów na 3! sposobów. Co daje wynik \({ 7 \choose 2 }\) * \({5 \choose 1 }\) * \({5 \choose 2}\) * \({4 \choose 1}\) * 3! = 25200. Czyli dokładnie 2x wiecej niż w rozwiązaniu. Nie rozumiem dlaczego moje rozumowanie jest złe. Prawdopodobieństwo wyszlo mi ostatecznie P(A)= \(\frac{1176}{3125}\)

Unnamed454
Witam na forum
Witam na forum
Posty: 7
Rejestracja: 30 maja 2011, 23:26
Płeć:

Re: VI próbna matura 2012 z zadania.info

Post autor: Unnamed454 » 16 kwie 2012, 03:23

Witam,

Znowu prawdopodobieństwo :) myślę, że od ostatniego czasu zrozumiałem trochę więcej i sądzę, że jestem w stanie wskazać błąd w twoim rozumowaniu szymo1993. Jeżeli się mylę proszę o poprawienie mnie. Z twojego rozumowania przeprowadzonego do przypadku drugiego wynika, że wszystko liczysz podwójnie. Weźmy sobie przykład: W pierwszym losowaniu wybierasz sobie 2 listy spośród 7 (dajmy na to wylosowało 2 i 4), teraz wybierasz sobie 1 spośród 5 skrzynek (niech będzie 3) i umieszczasz listy w tej skrzynce. Idźmy dalej, losujemy teraz 2 listy z pozostałych 5 (dajmy na to 3 i 5) i dobieramy do tego skrzyneczkę 1 z 4 pozostałych (wybrało może teraz nr 1 :) ). listy które nam pozostały rozmieszczamy w 3 pozostałych skrzynkach.

Bardziej graficznie (jeżeli można to tak nazwać :) ) \((5 i 3) (1) (4 i 2) (6) (7)\)

A teraz rozpatrzmy taki wariant : W pierwszym losowaniu wybierasz sobie 2 listy spośród 7 (5 i 3), teraz wybierasz sobie 1 spośród 5 skrzynek (1) i umieszczasz listy w tej skrzynce. Losujemy teraz 2 listy z pozostałych 5 (4 i 2) i dobieramy do tego skrzyneczkę 1 z 4 pozostałych (3). Listy które nam pozostały rozmieszczamy w 3 pozostałych skrzynkach (rozmieszczone one zostały identycznie jak poprzednio). Jak widać otrzymaliśmy ten sam układ \((5 i 3) (1) (4 i 2) (6) (7)\)

Jeżeli uwzględnisz to, że liczysz wszystko podwójnie to znaczy podzielisz całość liczoną przez ciebie przez 2! wynik powinien wyjść dobry (z tego co widzę 1 przypadek i omega dobrze policzona :) )

A teraz chcę podzielić się swoim rozwiązaniem i także spytać czy jest poprawne, a więc:

Omega identycznie liczona. Przypadek pierwszy:
a) do pierwszej skrzynki wrzucam \({ 7\choose1 }\) do drugiej \({ 6\choose1 }\) do trzeciej \({ 5\choose1 }\) do czwartej \({ 4\choose1 }\) natomiast do piątej pozostałe 3 listy \({ 3\choose3 }\). Całość pomnożona przez pięć (ponieważ mogę na 5 sposobów rozmieścić przypadek z trzema listami w jednej skrzynce)
b)do pierwszej skrzynki wrzucam \({ 7\choose1 }\) do drugiej \({ 6\choose1 }\) do trzeciej \({ 5\choose1 }\) natomiast do czwartej wrzucam \({ 4\choose2 }\) i do piątej resztę \({ 2\choose2 }\). Mnożę wszystko razy 10 ponieważ mam dziesięć możliwości ustawienia (identyczna sytuacja jak z ustawianiem ciągu AAABB)

Wydarzenie sprzyjające \(A\) wynosi więc \(A=4*5*6*7*5+5*6*6*7*10\)

Po podstawieniu do wzoru na prawdopodobieństwo \(P(A)= \frac{4*5*6*7*5+5*6*6*7*10}{5^7} = \frac{672}{3125}\)

Wynik ten sam natomiast nie wiem jak z tokiem rozumowania :) dzięki z góry za odpowiedź. Jak poprawnie to można dodać do rozwiązań :wink:

Awatar użytkownika
supergolonka
Moderator
Moderator
Posty: 1741
Rejestracja: 06 mar 2008, 11:53
Otrzymane podziękowania: 23 razy
Płeć:

Post autor: supergolonka » 16 kwie 2012, 06:57

OBIBOK: musisz dokładniej napisać co od czego odejmujesz, bo teraz nie za bardzo to rozumiem.

szymo1993: dokładnie tak jak napisał Unnamed454, w drugim przypadku liczysz podwójnie.

Unnamed454: to jest OK, dodałem jako drugi sposób.

szymo1993
Witam na forum
Witam na forum
Posty: 4
Rejestracja: 15 kwie 2012, 23:27
Płeć:

Re: VI próbna matura 2012 z zadania.info

Post autor: szymo1993 » 16 kwie 2012, 21:42

Dzięki wielkie, juz wszystko jasne :)

maniaq
Witam na forum
Witam na forum
Posty: 8
Rejestracja: 07 kwie 2011, 19:24
Płeć:

Re: VI próbna matura 2012 z zadania.info

Post autor: maniaq » 18 kwie 2012, 16:02

a ja mam pytanko jak koledzy wyżej do zadania z prawdopodobieństwa ponieważ trochę inaczej o tym zadaniu pomyślałem nie wiem czy poprawnie...

mianowicie:
można wprowadzić zdarzenie przeciwne tzn.:
A' - do minimum jednej ze skrzynek nie trafia ani jeden list...

Czyli może być jedna skrzynka pusta, 2 itd.

Jeżeli jedna to układamy 7 listów do 4 skrzynek itd. - czy ten sposób jest poprawny ?

wsl1993_
Fachowiec
Fachowiec
Posty: 936
Rejestracja: 07 maja 2009, 20:52
Podziękowania: 268 razy
Otrzymane podziękowania: 189 razy
Płeć:

Post autor: wsl1993_ » 18 kwie 2012, 20:03

mógłby ktoś rozjaśnić mi trochę sposób drugi z zadania trzeciego? nie bardzo wiem skąd ten dowód się wziął :/
\(\ge\)Pomogłem? Kliknij ł\(\alpha\)pkę w górę! ;)\(\le\)

Awatar użytkownika
supergolonka
Moderator
Moderator
Posty: 1741
Rejestracja: 06 mar 2008, 11:53
Otrzymane podziękowania: 23 razy
Płeć:

Post autor: supergolonka » 21 kwie 2012, 08:07

Do maniaq:
To prawda co piszesz, ale liczenie w ten sposób niewiele pomoże. Np. gdy dokładnie jedna ma być pusta, to musisz policzyć na ile sposobów można włożyć listy do 4 skrzynek, tak, aby żadna nie była pusta - a to przecież to samo co oryginalne zadanie.