Równanie płaszczyzny

Algebra liniowa, algebra, wektory, liczby zespolone
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Awatar użytkownika
bunio244
Stały bywalec
Stały bywalec
Posty: 453
Rejestracja: 26 gru 2010, 17:50
Podziękowania: 100 razy
Otrzymane podziękowania: 79 razy
Płeć:

Równanie płaszczyzny

Post autor: bunio244 »

Napisać równanie płaszczyzny przechodzącej przez punkty A(1,1,2), B(3,-2,-1) i równoległej do osi z.
Jeśli wiara czyni cuda, musisz wierzyć, że się uda. A są tylko dwa uda: albo się uda, albo się nie uda. Choć są też dwa inne, o wiele ciekawsze. :)

© by bunio244
radagast
Guru
Guru
Posty: 17554
Rejestracja: 09 lis 2010, 07:38
Lokalizacja: Warszawa
Podziękowania: 41 razy
Otrzymane podziękowania: 7436 razy
Płeć:

Post autor: radagast »

\(\pi\) -szukana płaszczyzna
\(\vec{AB}= \left[2,-3,-3 \right] \parallel \pi\)
\(\left[0,0,1 \right] \parallel \pi\)
\(\left[2,-3,-3 \right] \times \left[0,0,1 \right]= \left[-3,-2,0 \right] \perp \pi\)
No to \(\pi\) ma równanie postaci \(-3x-2y+C=0\), a ponieważ przechodzi przez \(A=\left(1,1,2 \right)\) to \(C=5\)
Ostatecznie więc \(\pi\) ma równanie \(-3x-2y+5=0\)
Awatar użytkownika
bunio244
Stały bywalec
Stały bywalec
Posty: 453
Rejestracja: 26 gru 2010, 17:50
Podziękowania: 100 razy
Otrzymane podziękowania: 79 razy
Płeć:

Post autor: bunio244 »

a dlaczego jest tam iloczyn wektorowy?
Jeśli wiara czyni cuda, musisz wierzyć, że się uda. A są tylko dwa uda: albo się uda, albo się nie uda. Choć są też dwa inne, o wiele ciekawsze. :)

© by bunio244
radagast
Guru
Guru
Posty: 17554
Rejestracja: 09 lis 2010, 07:38
Lokalizacja: Warszawa
Podziękowania: 41 razy
Otrzymane podziękowania: 7436 razy
Płeć:

Post autor: radagast »

Bo szukamy wektora prostopadłego do płaszczyzny , a mamy dwa równoległe
Awatar użytkownika
bunio244
Stały bywalec
Stały bywalec
Posty: 453
Rejestracja: 26 gru 2010, 17:50
Podziękowania: 100 razy
Otrzymane podziękowania: 79 razy
Płeć:

Post autor: bunio244 »

czyli iloczyn wektorowy dwóch równoległych daje prostopadły?
Jeśli wiara czyni cuda, musisz wierzyć, że się uda. A są tylko dwa uda: albo się uda, albo się nie uda. Choć są też dwa inne, o wiele ciekawsze. :)

© by bunio244
radagast
Guru
Guru
Posty: 17554
Rejestracja: 09 lis 2010, 07:38
Lokalizacja: Warszawa
Podziękowania: 41 razy
Otrzymane podziękowania: 7436 razy
Płeć:

Post autor: radagast »

Tak, a dokładniej Iloczyn wektorowy to wektor prostopadły, o długości równej polu równoległoboku rozpiętego na tych wektorach (jednostkę zaniedbać) , a zwrot ustala reguła prawej dłoni
Awatar użytkownika
bunio244
Stały bywalec
Stały bywalec
Posty: 453
Rejestracja: 26 gru 2010, 17:50
Podziękowania: 100 razy
Otrzymane podziękowania: 79 razy
Płeć:

Post autor: bunio244 »

dzięki :D
Jeśli wiara czyni cuda, musisz wierzyć, że się uda. A są tylko dwa uda: albo się uda, albo się nie uda. Choć są też dwa inne, o wiele ciekawsze. :)

© by bunio244
ODPOWIEDZ