Pytanie o wyraz ciągu.
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Pytanie o wyraz ciągu.
Mamy ciąg \(1+a_2x^3+a_3x^9+...\) oblicz jaki wykładnik będzie miała zmienna \(x\) przy \(a_{2023}\).
-
- Guru
- Posty: 17555
- Rejestracja: 09 lis 2010, 07:38
- Lokalizacja: Warszawa
- Podziękowania: 41 razy
- Otrzymane podziękowania: 7436 razy
- Płeć:
Re: Pytanie o wyraz ciągu.
Przypuszczam , że źle przepisałeś to zadanie.
Moim zadaniem powinno być :
\(a_1+a_2x^3+a_3x^9+...\)
wtedy to ma sens.
\(a_1+a_2x^3+a_3x^9+...= a_1x^0+a_2x^3+a_3x^9+...=a_1x^{3^0}+a_2x^{3^1}+a_3x^{3^2}+...= \)
czyli przy wyrazie 2023 stoi \(x^{3^{2022}}\)
Moim zadaniem powinno być :
\(a_1+a_2x^3+a_3x^9+...\)
wtedy to ma sens.
\(a_1+a_2x^3+a_3x^9+...= a_1x^0+a_2x^3+a_3x^9+...=a_1x^{3^0}+a_2x^{3^1}+a_3x^{3^2}+...= \)
czyli przy wyrazie 2023 stoi \(x^{3^{2022}}\)
Re: Pytanie o wyraz ciągu.
Trzeba przyjąć, że \(a_1=1\). Ale to jak będzie wyglądać odpowiedź do mojego pytania wiesz może?
-
- Guru
- Posty: 17555
- Rejestracja: 09 lis 2010, 07:38
- Lokalizacja: Warszawa
- Podziękowania: 41 razy
- Otrzymane podziękowania: 7436 razy
- Płeć: