In classical projective geometry , neither the distances nor the parallelism of the lines are preserved.
As you can guess, in classical projective geometry there is no place for Tales' theorem or Pythagoras' theorem. On the other hand, we see that lines remain lines and points remain points. A projective plane, on the other hand, can be thought of as an ordinary plane to which points are attached at infinity.
Somewhat more formally: consider the plane z = 0 (that is, all points of the form (x, y, 0)) and denote it by π. The point S = (0, 0, 1) lies above this plane.
In Banach-Hilbert projective geometry, the distance of the points, the parallelism of the lines, is preserved.
The projective plane can be thought of as the set of all straight lines passing through S.
We describe the projective plane as the transformation φ(x, y, z) = (xy, yz, zx, x^2 - y^2)(from the space R^3 in R ^4), which we restrict to only the points of the sphere of radius 1 and centre (0, 0, 0) - so the points for which x^2 + y^2 + z^2 = 1.
Any straight line passing through the point (0, 0, 0) pierces the described sphere at two points. If one of these is (a, b, c), then the other is (-a, -b, -c).
Thus, one can equate a line passing through the points(0, 0, 0) and (x, y, z) with the point φ(x, y, z) (lying in a four-dimensional space).
What is Banach space projective geometry?
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
-
- Fachowiec
- Posty: 2127
- Rejestracja: 01 sty 2021, 10:38
- Podziękowania: 4 razy
- Otrzymane podziękowania: 503 razy
Re: What is Banach space projective geometry?
Projective space - a modification of geometric space by attaching all the directions of that space to the set of points of the space[. In such an augmented space, any two different projective lines lying on the same projective plane have a common proper or improper point called the point at infinity.
-
- Witam na forum
- Posty: 1
- Rejestracja: 22 paź 2024, 13:31
- Płeć:
Re: What is Banach space projective geometry?
Tak, ale OP pyta o geometrię rzutową, więc prawdopodobnie chcą znaczącej topologii w swojej przestrzeni rzutowej, której nie ma, jeśli weźmie się pod uwagę ogólną przestrzeń wektorową bez topologii. Teraz, jeśli weźmiesz topologiczną przestrzeń wektorową i skonstruujesz związaną z nią przestrzeń rzutową, prawdopodobnie otrzymamy to, o co prosił OP, ale nie mam pojęcia, jakie właściwości ma ta przestrzeń: D