Nierówność z wartością bezwzględną

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Zaeraann
Witam na forum
Witam na forum
Posty: 5
Rejestracja: 17 paź 2020, 21:43
Podziękowania: 4 razy

Nierówność z wartością bezwzględną

Post autor: Zaeraann » 17 paź 2020, 22:08

Wytłumaczy mi ktoś, co należałoby zrobić jeśli założenie dla poniższej nierówności byłoby tożsamościowe bądź prawdziwe.
Bo przypuśćmy na przykład że dla \(x=2\) nierówność byłaby spełniona:\( 0 \le 0\). Czy nadal mógłbym podzielić tą nierówność stronami przez w.bezwzględną? Przecież ta się zeruje przy x=2 a przez zero nie mogę dzielić, nie mógłbym też wykluczyć tej dwójki gdyż po jej podstawieniu nierówność jest prawdziwa (nie wiem czy tutaj dobrze to rozumuję).


\(|(x-2)(x+2)|<|x-2|\)
\(|x-2| \cdot |x+2|<|x-2| //:|x-2|\)
\(|x+2|<1\)
\(x+2<1 \wedge x+2>-1\)
\(x<-1 \wedge x>-3\)
\(x\in (-3,-1)\)

zał: \(x \neq 2\)
dla \(x=2\): \(0 \cdot 4 < 0\)
\( 0<0\)
n.sprzeczna
Ostatnio zmieniony 17 paź 2020, 22:18 przez Jerry, łącznie zmieniany 1 raz.
Powód: pamiętaj o [tex] i [/tex]

Awatar użytkownika
Jerry
Stały bywalec
Stały bywalec
Posty: 519
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 5 razy
Otrzymane podziękowania: 234 razy

Re: Nierówność z wartością bezwzględną

Post autor: Jerry » 17 paź 2020, 22:25

Zaeraann pisze:
17 paź 2020, 22:08
... przypuśćmy na przykład że dla \(x=2\) nierówność byłaby spełniona:\( 0 \le 0\). Czy nadal mógłbym podzielić tą nierówność stronami przez w.bezwzględną?
Tak, bo
\(x=2\color{red}{\vee} \begin{cases}x\ne2\\ |x+2|\le 1 \end{cases} \)

Pozdrawiam
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .