Ekstrema wielomianu: 3x^4-4x^3-6x^2+12x-7

Regulamin forum
Proszę zapoznać się z zasadami dodawania postów w tym dziale!
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Awatar użytkownika
supergolonka
Moderator
Moderator
Posty: 1704
Rejestracja: 06 mar 2008, 11:53
Otrzymane podziękowania: 21 razy
Płeć:

Ekstrema wielomianu: 3x^4-4x^3-6x^2+12x-7

Post autor: supergolonka » 14 gru 2013, 20:42

Wyznacz ekstrema funkcji \(f(x)=3x^4-4x^3-6x^2+12x-7\).

Awatar użytkownika
supergolonka
Moderator
Moderator
Posty: 1704
Rejestracja: 06 mar 2008, 11:53
Otrzymane podziękowania: 21 razy
Płeć:

Rozwiązanie

Post autor: supergolonka » 14 gru 2013, 20:47

Obliczamy pochodną funkcji \(f\). \[f'(x)=12x^3-12x^2-12x+12=12(x^3-x^2-x+1)=12(x^2(x-1)-(x-1))=\\
=12(x^2-1)(x-1)=12(x+1)(x-1)^2.\]
W punkcie \(x=-1\) pochodna zmienia znak z ujemnego na dodatni, więc jest minimum lokalne w tym punkcie. W punkcie \(x=1\) pochodna nie zmienia znaku, więc nie ma w tym punkcie ekstremum. Mamy ponadto \[f(-1)=3+4-6-12-7=-18.\]

Odpowiedź: Minimum lokalne: \(f(-1)=-18\).


Awatar użytkownika
supergolonka
Moderator
Moderator
Posty: 1704
Rejestracja: 06 mar 2008, 11:53
Otrzymane podziękowania: 21 razy
Płeć:

Klon 1

Post autor: supergolonka » 14 gru 2013, 20:48

Wyznacz ekstrema funkcji \(f(x)=3x^4+4x^3-6x^2-12x+5\).

Awatar użytkownika
supergolonka
Moderator
Moderator
Posty: 1704
Rejestracja: 06 mar 2008, 11:53
Otrzymane podziękowania: 21 razy
Płeć:

Rozwiązanie - klon 1

Post autor: supergolonka » 14 gru 2013, 20:58

Obliczamy pochodną funkcji \(f\). \[f'(x)=12x^3+12x^2-12x-12=12(x^3+x^2-x-1)=12(x^2(x+1)-(x+1))=\\
=12(x^2-1)(x+1)=12(x-1)(x+1)^2.\]
W punkcie \(x=1\) pochodna zmienia znak z ujemnego na dodatni, więc jest minimum lokalne w tym punkcie. W punkcie \(x=-1\) pochodna nie zmienia znaku, więc nie ma w tym punkcie ekstremum. Mamy ponadto \[f(1)=3+4-6-12+5=-6.\]

Odpowiedź: Minimum lokalne: \(f(1)=-6\).