4 Zadania z olimpiady 2008

Zadania konkursowe i olimpijskie
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
tijo
Witam na forum
Witam na forum
Posty: 2
Rejestracja: 22 wrz 2008, 16:45

4 Zadania z olimpiady 2008

Post autor: tijo »

Wiem że zadania powinienem zrobić sam albo z małą pomocą ale dzisiaj dopiero dostałem zadania i wątpię żebym się wyrobił na czas. Więc jakby ktoś mógłby pomóc rozpisać zadania tak żebym mógł zrozumieć jak się za takie zadania zabrać i je rozwiązać.

1.
Na niektórych polach szachownicy rozmiaru m na n ustawiono wieże. Wiadomo, że dowolna wieża znajduje się w polu rażenia co najwyżej dwóch innych wież.
Wyznaczyć, w zależności od m,n >= 2, największą liczbę wież na szachownicy, dla której taka sytuacja jest możliwa.

Doszedłem do tego że największa liczba wież według mnie to m+n (wieże na 2 stycznych bokach plus jedna wieża w wolnym rogu). I tu mam problem jak to udowodnić że to jest właściwe rozwiązanie?

2.
Dana jest liczba całkowita n >= 2 niech r1, r2, r3, ..., r n-1 będą odpowiednio resztami dzielenia liczb
1, 1+2, 1+2+3, ... 1+2+...+(n-1)
przez n. Znaleść wszystkie takie wartości n, że ciąg (r1, r2, r3, ..., r n-1) jest permutacją ciągu (1,2,3, ..., n-1).

Ciągów nawet nie miałem więc kompletnie nie wiem jak zróbić to zadanie...

3.
Okrąg wpisany w trójkąt ABC jest styczny do boków BC, CA, AB odpowiednio w punktach D, E, F. Punkty M, N, J są odpowiednio środkami okręgów wpisanych w trójkąty AEF, BDF, DEF.
Dowieść, że punkty F i J są symetryczne względem prostej MN.
4.
Udowodnić, że dla dowolnych nieujemnych liczb rzeczywistych a.b,c prawdziwa jest nierówność
\(4(sqrt{a^3b^3}+\sqrt{b^3c^3}+\sqrt{c^3a^3})leq4c^3+(a+b)^3\)
Awatar użytkownika
robbo
Administrator
Posty: 238
Rejestracja: 06 mar 2008, 09:32
Podziękowania: 1 raz
Otrzymane podziękowania: 3 razy
Płeć:
Kontakt:

Post autor: robbo »

Akurat z olimpiadą mam trochę wspólnego i powiedzmy, że do 10 października zadania te są zakazane. Potem nie ma sprawy.
Awatar użytkownika
supergolonka
Moderator
Moderator
Posty: 1869
Rejestracja: 06 mar 2008, 10:53
Otrzymane podziękowania: 29 razy
Płeć:
Kontakt:

Post autor: supergolonka »

Embargo minęło, więc proszę bardzo.
www.zadania.info/8671292
www.zadania.info/9399626
www.zadania.info/9935069
www.zadania.info/8915345

Gdyby ktoś miał inne pomysły to jestem bardzo ich ciekaw.
Ostatnio zmieniony 10 paź 2008, 12:30 przez supergolonka, łącznie zmieniany 1 raz.
ODPOWIEDZ