Wektory

Pytania o rozwiązania zadań.
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
NieRozumiem85
Często tu bywam
Często tu bywam
Posty: 162
Rejestracja: 30 sty 2016, 09:57
Podziękowania: 88 razy

Wektory

Post autor: NieRozumiem85 » 28 paź 2016, 18:37

Wektory \(\vec{a}\) , \(\vec{b}\) , \(\vec{c}\) mają wspólny początek, gdzie \(\vec{a}\) , \(\vec{b}\) są bokami trójkąta, zaś \(\vec{c}\) jego środkową. Wykaż, że \(\vec{axb}\) +\(\vec{bxc}\) + \(\vec{cxa}\) =0

Panko
Fachowiec
Fachowiec
Posty: 2939
Rejestracja: 20 gru 2013, 22:41
Lokalizacja: Radom
Otrzymane podziękowania: 1554 razy
Płeć:

Re: Wektory

Post autor: Panko » 28 paź 2016, 22:26

\(\vec c= \frac{1}{2}( \vec a+ \vec b)\)

\(\vec a \times \vec b + \vec b \times \vec c + \vec c \times \vec a = \vec a \times \vec b +\vec b \times \vec c - \vec a \times \vec c\)= \(\vec a \times \vec b +( \vec b - \vec a) \times \vec c = \vec a \times \vec b +( \vec b - \vec a) \times \frac{1}{2}( \vec a+ \vec b)\) =\(\vec a \times \vec b +\frac{1}{2} \cdot ( \vec b \times \vec a +\vec b \times \vec b - \vec a \times \vec a - \vec a \times \vec b) = \vec a \times \vec b +\frac{1}{2} \cdot ( \vec b \times \vec a +0-0 - \vec a \times \vec b )\) =\(\vec a \times \vec b +\frac{1}{2} \cdot ( \vec b \times \vec a +0-0 + \vec b \times \vec a )\) =\(\vec a \times \vec b + \vec b \times \vec a =0\)