Adblock jest włączony: Serwis forum.zadania.info jest utrzymywany z wpływów z reklam (których wcale nie ma tu zbyt dużo). Proszę rozważyć wyłączenie Adblocka na tej stronie.
Pytania o rozwiązania zadań.
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
-
dawid0512
- Stały bywalec

- Posty: 348
- Rejestracja: 28 mar 2009, 10:41
- Podziękowania: 107 razy
- Otrzymane podziękowania: 2 razy
Post
autor: dawid0512 » 24 lis 2011, 15:12
\(\frac{C'(x)e^x(1+e^x)+C(x)e^x(1+e^x)-e^{2x}C(x)}{(1+e^x)^2}=\frac{C(x)e^x}{(1+e^x)^2}+e^x\\
\frac{C'(x)e^x(1+e^x)}{(1+e^x)^2}=e^x\\\)
Nie mogę zrozumieć tego przejścia.Napisałem do autorki rozwiązania ale napisze jeszcze tutaj więcej wyjaśnień to więcej faktów do łączenia i być może coś z tego wyjdzie.Jak by ktoś wiedział co i jak to z góry dzięki za pomoc.

-
ewelawwy
- Fachowiec

- Posty: 2057
- Rejestracja: 16 kwie 2010, 15:32
- Lokalizacja: Warszawa
- Podziękowania: 2 razy
- Otrzymane podziękowania: 910 razy
- Płeć:
Post
autor: ewelawwy » 24 lis 2011, 16:18
wystarczy C(x)e^x wymnożyć przez nawias i ładnie widać, co się poskraca
\(\frac{C'(x)e^x(1+e^x)+C(x)e^x(1+e^x)-e^{2x}C(x)}{(1+e^x)^2}=\frac{C(x)e^x}{(1+e^x)^2}+e^x\\
\frac{C'(x)e^x(1+e^x)+C(x)e^x+C(x)e^{2x}-e^{2x}C(x)}{(1+e^x)^2}-\frac{C(x)e^x}{(1+e^x)^2}=e^x\\\)