Zagadnienie początkowe

Pytania o rozwiązania zadań.
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
czupurek20044
Witam na forum
Witam na forum
Posty: 6
Rejestracja: 06 gru 2010, 21:22
Podziękowania: 1 raz

Zagadnienie początkowe

Post autor: czupurek20044 » 05 wrz 2011, 12:44

Witacje,
od 2 dni liczę to zadanie i nie jestem w stanie sobie z nim poradzić. Proszę aby ktoś je rozwiązał i napisał drobne komentarze abym wiedziała jak rozwiązać

Dane jest zagadnienie początkowe\(xy'=2y-2x, \ \ y(1)=1\)

a)rozwiązanie szczególne to \(y=-x^2+2x\)
b) rozwiązanie ogólne to \(y=-Cx^2-x\)
c)rozw, ogólne to:\(y=C(x^3-x)\)
d)rozw. szczególne to \(y=2x^2+x\)

Awatar użytkownika
ewelawwy
Fachowiec
Fachowiec
Posty: 2057
Rejestracja: 16 kwie 2010, 15:32
Lokalizacja: Warszawa
Podziękowania: 2 razy
Otrzymane podziękowania: 910 razy
Płeć:

Re: Zagadnienie początkowe

Post autor: ewelawwy » 06 wrz 2011, 14:10

\((*)\ y'=\frac{2y}x -2\\
\frac{dy}{dx}=\frac{2y}x -2\)

równanie lin. jednorodne:
\(\frac{dy}y=\frac{2dx}x\\
\ln |y|=2\ln |x| +C\\
\ln |y| = \ln |x^2| +\ln |C|\\
\ln |y|= \ln |Cx^2|\)

\(y=Cx^2\) <-- rozw. ogólne równania lin. jednorodnego
uzmienniamy stałą:
\((**)\ y=C(x)x^2\)
różniczkujemy względem x: \(y'= C'(x)x^2+C(x)2x\)
wracamy do (*):
\(C'(x)x^2+C(x)2x=\frac 2x \cdot C(x)x^2-2\\
C'(x)x^2=-2\\
C'(x)=\frac{-2}{x^2}\\
\frac{dC(x)}{dx}=\frac{-2}{x^2}\\
\int dC(x)=\int \frac{-2}{x^2}dx\\
C(x)=\frac 2x +c\)

wstawiamy do (**):
\(y=(\frac 2x +c)\cdot x^2\) <-- rozw. szczególne
z zag. początkowego otrzymujemy:
\(1=(\frac 21 +c)\cdot 1\\
1=2+c\\
c=-1\)

podstawiamy do rozw. szczególnego i otrzymujemy rozw. szczególne zagadnienia początkowego:
\(y=(\frac 2x -1)\cdot x^2\\
y=-x^2+2x\)

odp. a)