Własności liczb

Teoria liczb, teoria grafów, indukcja
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
takamatematyka
Rozkręcam się
Rozkręcam się
Posty: 47
Rejestracja: 23 maja 2016, 10:47
Podziękowania: 22 razy
Płeć:

Własności liczb

Post autor: takamatematyka »

Niech \(P(x)=\sum^{n}_{k=0}a_{k}\cdot \left(x \atop k \right)\) będzie wielomianem. Następujące warunki są równoważne:
\(
a_{1},a_{2},\ldots, a_{n}\in \mathbb{Z}\)

\( \forall_{x\in \mathbb{Z}}\ P(x)\in \mathbb{Z}\)

Udowodnij poniższe równości

\(\left\lbrace n+1 \atop m+1 \right\rbrace=\sum_{k}\left( n \atop k \right)\left\lbrace k \atop m\right\rbrace\\
\left[n+1 \atop m+1 \right]=\sum_{k}\left[n\atop k\right]\left(k\atop m\right)\\



\left\lbrace n\atop m \right\rbrace=\sum_{k}\left(n\atop k\right)\left\lbrace k+1\atop m+1 \right\rbrace (-1)^{n-k}\\



\left[n\atop m\right]=\sum_{k}\left[n+1 \atop k+1\right]\left(k\atop m \right)(-1)^{m-k}\\



m!\left\lbrace n\atop m\right\rbrace=\sum_{k}\left(m\atop k\right)k^{n}(-1)^{m-k}\\



\left\lbrace n+1\atop m+1 \right\rbrace=\sum^{n}_{k=0}\left\lbrace k\atop m\right\rbrace (m+1)^{n-k}\\



\left[n+1\atop m+1 \right]=\sum^{n}_{k=0}\left[k\atop m\right]n^{\underline{n-k}}=n!\sum^{n}_{k=0}\left[k\atop m\right]/k!\\



\left\lbrace m+n+1 \atop m\right\rbrace=\sum^{m}_{k=0}k\left\lbrace n+k \atop k\right\rbrace\\


\left[m+n+1 \atop m \right]=\sum^{m}_{k=0}(n+k)\left[n+k\atop k\right]\\



\left(n\atop m\right)=\sum_{k}\left\lbrace n+1 \atop k+1\right\rbrace\left[k\atop m\right](-1)^{m-k}\)


Bardzo proszę o pomoc...
ODPOWIEDZ