Trudne pytanie o geometrię

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
mukesogel
Witam na forum
Witam na forum
Posty: 1
Rejestracja: 15 gru 2021, 07:59
Płeć:

Trudne pytanie o geometrię

Post autor: mukesogel » 15 gru 2021, 08:06

Przygotowuję się do nadchodzącego konkursu matematycznego (Waterloo's Euclid Contest) i napotkałem następujące pytanie:

„Mały Książę żyje na kulistej planecie o promieniu 24km i środku O. Unosi się w helikopterze (H) na wysokości 2km nad powierzchnią planety. Jaka jest odległość ze swojej pozycji w helikopterze , w km, do najdalszego punktu na powierzchni planety, jaki może zobaczyć?"

Niestety w szkole średniej prawie nie porusza się geometrii, więc trochę nie potrafię rozwiązać tego problemu.

Oto co wiem: równanie okręgu, którym jest planeta to x2 + y2 = 242 równanie prostej od H do najdalszego punktu na okręgu to y = mx + 26 dla niektórych m gdzie jest tylko jedna wartość dla x (w tym przypadku będą dwie możliwe wartości m, a linia będzie styczna do okręgu)

Jeśli założymy, że najdalszym punktem, jaki książę może zobaczyć, jest A(x,y), nachylenie prostej wynosi (y-26)/x, ale jest to bezużyteczne, ponieważ wpisanie go z powrotem do równania linii daje y=y

Zamierzam dalej pracować nad tym problemem i tak naprawdę nie chcę w tym momencie odpowiedzi (opublikuję ją, gdy skończę), chciałbym po prostu popchnąć we właściwym kierunku...

Dziękuję

korki_fizyka
Expert
Expert
Posty: 6034
Rejestracja: 04 lip 2014, 14:55
Podziękowania: 45 razy
Otrzymane podziękowania: 1216 razy
Płeć:

Re: Trudne pytanie o geometrię

Post autor: korki_fizyka » 15 gru 2021, 09:20

Równanie okręgu: \(x^2 +y^2 =\) 576

Waterloo's Euclid Contest jest konkursem dla studentów, wklejaj swoje problemy w odpowiednim dziale.
Pomoc w rozwiązywaniu zadań z fizyki, opracowanie statystyczne wyników "laborek", przygotowanie do klasówki, kolokwium, matury z matematyki i fizyki itd.
mailto: korki_fizyka@tlen.pl

Awatar użytkownika
Jerry
Fachowiec
Fachowiec
Posty: 2210
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 30 razy
Otrzymane podziękowania: 1037 razy

Re: Trudne pytanie o geometrię

Post autor: Jerry » 15 gru 2021, 13:39

korki_fizyka pisze:
15 gru 2021, 09:20
Waterloo's Euclid Contest jest konkursem dla studentów, wklejaj swoje problemy w odpowiednim dziale.
Bez przesady...

Hint 1: zrób schludny, dwuwymiarowy rysunek:
001.jpg
i przypomnij sobie filozofa z Samos

Hint 2:
Układ
\(\begin{cases}x^2+y^2=24^2\\ y=mx+26\end{cases}\)
musi mieć jedno rozwiązanie, czyli po sprowadzeniu do formy kwadratowej jednej zmiennej wyróżnik musi się zerować (\(\Delta=0\))
i trzeba wskazać współrzędne punktu \(P\) oraz policzyć \(|HP|\)

Hint 3:
Prosta \(mx-y+26=0 \) powinna być o \(24\) odległa od \((0,0)\), czyli
\({m\cdot0-0+26\over\sqrt{m^2+(-1)^2}}=24\)
i trzeba wskazać współrzędne punktu \(P\) oraz policzyć \(|HP|\)
Odpowiedzi
Pokaż
\(|m|={5\over12}, \ P\big(\pm{120\over13},{288\over13}\big),\ z=10\)
Pozdrawiam
Nie masz wymaganych uprawnień, aby zobaczyć pliki załączone do tego posta.
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .