równanie trygonometryczne zmiennej cosinus

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
viGor027
Rozkręcam się
Rozkręcam się
Posty: 37
Rejestracja: 10 sie 2021, 16:32
Podziękowania: 15 razy
Płeć:

równanie trygonometryczne zmiennej cosinus

Post autor: viGor027 » 14 wrz 2021, 16:14

Cześć, mam takie oto równanie:

\(\sin^2x-8\sin x\cdot\cos x+7\cos^2x=0\)

I potraktowałem w nim cosinusa jako parametr, obliczyłem delte, i wziąłem pod uwage dwa rozwiązania, tak jakbym rozwiązywał normalnie równanie kwadratowe z deltą. Rzecz w tym, że po jednej stronie wychodzi mi \(\sin x=\cos x\), co potrafię obliczyć, natomiast druga możliwość to \(\sin x=7\cos x\), i tutaj nie wiem jak się za to zabrać.
Ostatnio zmieniony 14 wrz 2021, 16:41 przez Jerry, łącznie zmieniany 1 raz.
Powód: poprawa wiadomości; nie wrzucaj skanów a formy matematyczne pisz w kodzie!

Icanseepeace
Często tu bywam
Często tu bywam
Posty: 247
Rejestracja: 03 kwie 2021, 21:36
Podziękowania: 5 razy
Otrzymane podziękowania: 139 razy
Płeć:

Re: równanie trygonometryczne zmiennej cosinus

Post autor: Icanseepeace » 14 wrz 2021, 16:35

Rozpatrz osobno przypadek gdy \( \cos (x) = 0 \). Następnie skoro cosinus jest różny od 0 to możesz podzielić równanie stronami przez \( \cos (x) \). Aby wyznaczyć dokładną wartość używasz funkcji \( \arctan (x) \), natomiast w celu wyznaczenia wartości przybliżonej możesz użyć tablic.

Awatar użytkownika
Jerry
Fachowiec
Fachowiec
Posty: 1542
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 22 razy
Otrzymane podziękowania: 712 razy

Re: równanie trygonometryczne zmiennej cosinus

Post autor: Jerry » 14 wrz 2021, 16:37

Powinienem wywalić Twój post do śmietnika za skany, ale ...
viGor027 pisze:
14 wrz 2021, 16:14
... druga możliwość to sinx=7cosx, i tutaj nie wiem jak się za to zabrać.
\(\sin x= 7\cos x\iff \tg x=7\iff (x=\arctg 7+k\cdot\pi\wedge k\in\zz)\)

Pozdrawiam
PS. Dane równanie można było od razu podzielić stronami przez \(\cos^2x\) (zastanów się dlaczego można!) i wprowadzić zmienną pomocniczą \(t=\tg x\)
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .