Nierówność

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
alanowakk
Często tu bywam
Często tu bywam
Posty: 229
Rejestracja: 05 gru 2018, 00:54
Podziękowania: 57 razy
Płeć:

Nierówność

Post autor: alanowakk » 05 sie 2021, 21:55

Rozwiąż nierówność \(|x+1|^3 - 3|x+1 |^2 <0 \)

Awatar użytkownika
Jerry
Fachowiec
Fachowiec
Posty: 1542
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 22 razy
Otrzymane podziękowania: 712 razy

Re: Nierówność

Post autor: Jerry » 05 sie 2021, 22:17

Niech
\(|x+1|=t\ge0\)
wtedy
\(t^3 - 3t^2 <0\\ t^2(t-3)<0\\ t\ge0\So t\in(0;3)\\ 0<|x+1|<3 \\ -3<x+1<3\wedge x+1\ne0\\ x\in(-4;-1)\cup(-1;2)\)

Pozdrawiam
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .

Icanseepeace
Często tu bywam
Często tu bywam
Posty: 247
Rejestracja: 03 kwie 2021, 21:36
Podziękowania: 5 razy
Otrzymane podziękowania: 139 razy
Płeć:

Re: Nierówność

Post autor: Icanseepeace » 05 sie 2021, 22:19

Dla \( x = -1 \) nierówność nie jest spełniona. Dla pozostałych \( x \) mamy:
\( |x+1|^3 - 3|x+1|^2 < 0 \ \ || \ \ :|x+1|^2 > 0 \\ |x + 1| - 3 < 0 \\ |x + 1| < 3 \\ -3 < x + 1 < 3 \\ -4 < x < 2 \)
Ostatecznie musimy z tego zbioru wyrzucić \( x = -1 \) dostając wynik:
\( x \in (-4 , 2) \setminus \{-1\} \)