Równanie trygonometryczne

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Januszgolenia
Fachowiec
Fachowiec
Posty: 1189
Rejestracja: 01 lip 2010, 10:44
Podziękowania: 1254 razy
Otrzymane podziękowania: 2 razy

Równanie trygonometryczne

Post autor: Januszgolenia » 30 lip 2018, 12:29

Rozwiąż równanie w przedziale \(<\frac{ \pi }{2},2 \pi>\)
\(sinx+cosx=2^{-0,5}\)

radagast
Guru
Guru
Posty: 16705
Rejestracja: 09 lis 2010, 08:38
Lokalizacja: Warszawa
Podziękowania: 22 razy
Otrzymane podziękowania: 7051 razy
Płeć:

Post autor: radagast » 30 lip 2018, 13:58

\(\sin x+\cos x=2^{-0,5}\)
\(\sin x+\cos x= \frac{1}{ \sqrt{2} }\)
\(\sin x+\sin \left( \frac{ \pi }{2} -x \right) = \frac{1}{ \sqrt{2} }\)
\(2\sin \frac{ \pi }{4} \cos \left( x- \frac{ \pi }{4} \right) = \frac{1}{ \sqrt{2} }\)
\(\sqrt{2} \cos \left( x- \frac{ \pi }{4} \right) = \frac{1}{ \sqrt{2} }\)
\(\cos \left( x- \frac{ \pi }{4} \right) = \frac{1}{ 2 }\)
\(\cos \left( x- \frac{ \pi }{4} \right) =\cos \frac{ \pi }{3}\)
\(x- \frac{ \pi }{4} = \frac{ \pi }{3}+2k\pi\ \vee \ x- \frac{ \pi }{4} = - \frac{ \pi }{3}+2k\pi\)
\(x = \frac{7 \pi }{12}+2k\pi\ \vee \ x= \frac{23 \pi }{12}+2k\pi\)
no to ograniczając się do podanego przedziału mamy:
\(x = \frac{7 \pi }{12} \vee \ x= \frac{23 \pi }{12}\)
No i to się zgadza, bo:
ScreenHunter_428.jpg
Nie masz wymaganych uprawnień, aby zobaczyć pliki załączone do tego posta.