Równanie wykładnicze

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Januszgolenia
Fachowiec
Fachowiec
Posty: 1214
Rejestracja: 01 lip 2010, 10:44
Podziękowania: 1284 razy
Otrzymane podziękowania: 2 razy

Równanie wykładnicze

Post autor: Januszgolenia » 18 lut 2020, 20:28

Rozwiąż równanie.
\((2+ \sqrt{3})^x+(2- \sqrt{3})^x\)=4

Awatar użytkownika
szw1710
Często tu bywam
Często tu bywam
Posty: 207
Rejestracja: 04 sty 2020, 13:47
Lokalizacja: Cieszyn
Podziękowania: 1 raz
Otrzymane podziękowania: 56 razy
Płeć:

Re: Równanie wykładnicze

Post autor: szw1710 » 18 lut 2020, 21:08

Wskazówka: \(2-\sqrt{3}=\dfrac{1}{2+\sqrt{3}}.\) Pomnóz obustronnie przez \(2+\sqrt{3}\) i wstaw nową zmienną \(t=(2+\sqrt{3})^x\), a dojdziesz do równania kwadratowego.
Profil na e-korepetycje.net
Zapraszam też na mój blog ,,Być matematykiem''.

Awatar użytkownika
eresh
Mistrz
Mistrz
Posty: 14232
Rejestracja: 04 cze 2012, 13:41
Podziękowania: 3 razy
Otrzymane podziękowania: 8358 razy
Płeć:

Re: Równanie wykładnicze

Post autor: eresh » 18 lut 2020, 23:02

Januszgolenia pisze:
18 lut 2020, 20:28
Rozwiąż równanie.
\((2+ \sqrt{3})^x+(2- \sqrt{3})^x\)=4
Spoiler
Pokaż
\((2+ \sqrt{3})^x+(2- \sqrt{3})^x=4\\
(2+\sqrt{3})^x+\frac{1}{(2+\sqrt{3})^x}=4\\
(2+\sqrt{3})^x=t\\
t+\frac{1}{t}=4\\
t^2+1=4t\\
t^2-4t+1=0\\
\Delta = 12=(2\sqrt{3})^2\\
t_1=\frac{4-2\sqrt{3}}{2}=2-\sqrt{3}\\
t_2=2+\sqrt{3}\\
(2+\sqrt{3})^x=2-\sqrt{3}\So x=-1\\
(2-\sqrt{3})^x=2-\sqrt{3}\So x=1\)

Galen
Guru
Guru
Posty: 18297
Rejestracja: 17 sie 2008, 15:23
Podziękowania: 3 razy
Otrzymane podziękowania: 9082 razy

Re: Równanie wykładnicze

Post autor: Galen » 18 lut 2020, 23:03

Zauważ,że \((2+\sqrt{3})\cdot (2-\sqrt{3})=4-3=1\\stąd\\2-\sqrt{3}=\frac{1}{2+\sqrt{3}}=(2+\sqrt{3})^{-1}\\2+\sqrt{3}=t\\t^x+\frac{1}{t^x}=4\;/\cdot t^x\\(t^x)^2-4t^x+1=0\\wstaw\;t^x=u\;\;i\;\;u>0\\u^2-4u+1=0\\u_1=2-\sqrt{3}\;\;czyli\;\;(2+\sqrt{3})^x=2-\sqrt{3}\;\;\;stąd\;\;x_1=-1\\u_2=2+\sqrt{3}\;\;\;\;czyli\;\;(2+\sqrt{3})^x=2+\sqrt{3}\;\;\;stąd\;\;\;x_2=1\)
Wszystko jest trudne,nim stanie się proste.