Pomocy ciągi

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
aramila
Dopiero zaczynam
Dopiero zaczynam
Posty: 27
Rejestracja: 17 sty 2021, 13:02
Podziękowania: 28 razy
Płeć:

Pomocy ciągi

Post autor: aramila » 13 kwie 2021, 14:13

Liczby \( \sin^2 x, \cos^2 x, 2 \sin x+ 1\) tworzą ciąg arytmetyczny. Wyznacz liczbę \(x\), jeśli wiadomo że \(x \in\langle0; 2\pi\rangle\). Skorzystaj z tablic trygonometrycznych
:?:
Ostatnio zmieniony 13 kwie 2021, 15:40 przez Jerry, łącznie zmieniany 1 raz.
Powód: poprawa wiadomości, cała "matematyka" w kodzie !!!

Awatar użytkownika
Jerry
Fachowiec
Fachowiec
Posty: 1240
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 10 razy
Otrzymane podziękowania: 597 razy

Re: Pomocy ciągi

Post autor: Jerry » 13 kwie 2021, 15:51

\( (\sin^2 x, \cos^2 x, 2 \sin x+ 1)CA\iff 2\cos^2x=\sin^2x+2\sin x+1\)
\(2(1-\sin^2x)=\sin^2x+2\sin x+1\)
Niech \(t=\sin x\in\langle-1; 1\rangle\)
Wtedy
\(3t^2+2t-1=0\\
t=-1\vee t={1\over3}\\
\sin x=-1\vee \sin x={1\over3}\)

\(x\in\langle0;2\pi\rangle\So(x={3\pi\over2}\vee x\approx {19\pi\over180}\vee x\approx{161\pi\over180})\)

Pozdrawiam
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .