Monotoniczność ciągu z granicą "e"

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
poetaopole
Stały bywalec
Stały bywalec
Posty: 316
Rejestracja: 15 kwie 2009, 07:26
Podziękowania: 185 razy
Płeć:

Monotoniczność ciągu z granicą "e"

Post autor: poetaopole » 09 paź 2019, 15:40

Wykaż, przy użyciu dwumianu Newtona, że ciąg \((1+ \frac{1}{n})^n\) jest rosnący

Awatar użytkownika
panb
Expert
Expert
Posty: 3172
Rejestracja: 26 kwie 2010, 22:54
Lokalizacja: Nowiny Wielkie
Otrzymane podziękowania: 1086 razy
Płeć:

Re: Monotoniczność ciągu z granicą "e"

Post autor: panb » 10 paź 2019, 22:28

\(a_n= \left( 1+\frac{1}{n}\right) ^n= \sum_{k=0}^{n}{n\choose k} \frac{1}{n^k} =\frac{1}{k!}\frac{n(n-1)(n-2)\cdot \ldots \cdot (n-k+1)}{n^k}=\\= \sum_{k=0}^{n} \left(\frac{1}{k!} \frac{n}{n} \cdot \frac{n-1}{n} \cdot \ldots \cdot \frac{n-k+1}{n} \right) = \sum_{k=0}^{n} 1 \cdot \left( 1- \frac{1}{n} \right) \cdot \left(1- \frac{2}{n} \right) \cdot \ldots \cdot \left(1- \frac{k-1}{n} \right) \)
Podobnie \(a_{n+1}= \sum_{k=0}^{n+1} \left( \frac{1}{k!} \left( 1- \frac{1}{n+1} \right) \cdot \left( 1- \frac{2}{n+1} \right) \cdot \ldots \left( 1- \frac{k-1}{n+1} \right) \right) \)
Ponieważ \( \forall\,\, i: \,\, 1\le i \le k-1 \quad \left( 1- \frac{i}{n} \right) < \left( 1- \frac{i}{n+1} \right) \) oraz \(a_{n+1}\) ma o jeden składnik więcej, więc \(a_n < a_{n+1}\).

Co za żmudna pisanina. Mam nadzieję, że zrozumiesz. :)