rzut pionowy dwoma kamieniami

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
rivit
Dopiero zaczynam
Dopiero zaczynam
Posty: 25
Rejestracja: 16 kwie 2018, 18:09
Podziękowania: 5 razy

rzut pionowy dwoma kamieniami

Post autor: rivit » 06 kwie 2019, 00:07

Dwa kamienie wyrzucono w tej samej chwili i z tego samego punktu pionowo w górę.
Prędkości początkowe tych kamieni wynoszą odpowiednio \(v_1 = 20 \frac{m}{s}, v_2 = 10 \frac{m}{s}\)
Dla każdego z kamieni znaleźć wysokość nad miejscem wyrzutu i drogę przebytą jako funkcję czasu. Jak zmienia się w czasie odległość kamieni od siebie ? Przyjąć założenie, że opór powietrza możemy w tym problemie pominąć. Jak zmieniłoby się rozwiązanie gdyby punkt wyrzutu drugiego kamienia leżał o \(H\) wyżej ?


Proszę o pomoc.
Pozdrawiam.

korki_fizyka
Expert
Expert
Posty: 3778
Rejestracja: 04 lip 2014, 14:55
Otrzymane podziękowania: 424 razy
Płeć:

Post autor: korki_fizyka » 06 kwie 2019, 10:00

Wystarczy dwa razy zastosować wzór na drogę w ruchu jednostajnie zmiennym, pewnie sam byś na to wpadł, gdyby nie późna pora ;)
\(y_1(t) = v_1t - \frac{gt^2}{2}\)
\(y_2(t) = v_2t - \frac{gt^2}{2}\)

ruch trzeba rozbić na 3 fazy:
- gdy drugi kamień osiągnie maksymalną wysokość , a stanie się to po czasie \(t_1 = \frac{v_2}{g}\), od tego momentu kamienie będą się oddalały od siebie a nie zbliżały
- gdy pierwszy kamień osiągnie maksymalną wysokość po czasie \(t_2 = \frac{v_1}{g}\), odtąd znowu zaczną się zbliżać
- gdy drugi spadnie na ziemię \(t_3 = 2t_1\) wtedy odległość między nimi będzie maleć do zera

\(\Delta y = y_1 - y_2\) dla 0< t < t_1
\(\Delta y = y_1 + y_2\) dla t_1 < t < t_2
\(\Delta y = y_1 - y_2\) dla t_2 < t < t_3.

Natomiast, gdy drugi kamień będzie wyrzucony z miejsca położonego na wysokości H, to trzeba poprawić dla niego równanie ruchu:\(y_2(t) = H + v_2t - \frac{gt^2}{2}\).
Pomoc w rozwiązywaniu zadań z fizyki, opracowanie statystyczne wyników "laborek", przygotowanie do klasówki, kolokwium, matury z matematyki i fizyki itd.
mailto: korki_fizyka@tlen.pl