Dowód z wielomianem

Zadania niepasujące do innych kategorii.
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
viGor027
Rozkręcam się
Rozkręcam się
Posty: 37
Rejestracja: 10 sie 2021, 16:32
Podziękowania: 15 razy
Płeć:

Dowód z wielomianem

Post autor: viGor027 » 02 paź 2021, 11:49

Wykaż, że wielomian:
\(x^4 -2x^3 +2x^2 -8x +16\)
dla każdego x należącego do rzeczywistych jest dodatni.

Icanseepeace
Stały bywalec
Stały bywalec
Posty: 250
Rejestracja: 03 kwie 2021, 21:36
Podziękowania: 6 razy
Otrzymane podziękowania: 140 razy
Płeć:

Re: Dowód z wielomianem

Post autor: Icanseepeace » 02 paź 2021, 11:58

Trick polega na rozbiciu \( 2x^2 \) na \( x^2 + x^2 \) a następnie odpowiednim pogrupowaniu:
\( x^4 - 2x^3 + 2x^2 - 8x + 16 = (x^4 - 2x^3 + x^2) + (x^2 - 8x + 16) \)
Reszta to skorzystanie z wzorów skróconego mnożenia i napisanie odpowiedniego uzasadnienia.

viGor027
Rozkręcam się
Rozkręcam się
Posty: 37
Rejestracja: 10 sie 2021, 16:32
Podziękowania: 15 razy
Płeć:

Re: Dowód z wielomianem

Post autor: viGor027 » 02 paź 2021, 13:43

Icanseepeace pisze:
02 paź 2021, 11:58
Trick polega na rozbiciu \( 2x^2 \) na \( x^2 + x^2 \) a następnie odpowiednim pogrupowaniu:
\( x^4 - 2x^3 + 2x^2 - 8x + 16 = (x^4 - 2x^3 + x^2) + (x^2 - 8x + 16) \)
Reszta to skorzystanie z wzorów skróconego mnożenia i napisanie odpowiedniego uzasadnienia.
Dzięki, satysfakcjonująca odpowiedź :D