Zadanie optymalizacyjne

Zadania niepasujące do innych kategorii.
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Blake
Witam na forum
Witam na forum
Posty: 4
Rejestracja: 18 lis 2018, 00:56
Podziękowania: 1 raz
Płeć:

Zadanie optymalizacyjne

Post autor: Blake » 07 lut 2019, 18:21

Witam, prosiłbym o pomoc lub ewentualne wskazówki jak rozwiązać poniższe zadanie:

W trójkąt równoramienny, którego ramiona są długości a, a miara kąta zawartego pomiędzy nimi wynosi α, wpisano prostokąt w taki sposób, że jeden z boków prostokąta zawarty jest w jednym z ramion trójkąta. Jakie powinny być wymiary tego prostokąta, aby jego pole było największe? Wyznaczyć wartość tego największego pola.

Awatar użytkownika
panb
Expert
Expert
Posty: 3152
Rejestracja: 26 kwie 2010, 22:54
Lokalizacja: Nowiny Wielkie
Otrzymane podziękowania: 1072 razy
Płeć:

Re: Zadanie optymalizacyjne

Post autor: panb » 08 lut 2019, 14:02

WSKAZÓWKI:
rys.png
Używając oznaczeń jak na rysunku powyżej.
  • \(P=xy\\
    y=a-p-q\\
    \frac{x}{p}= \tg \alpha \,\,\, \wedge \,\,\, \frac{q}{x}= \tg \beta \\
    \beta = 90^ \circ -\frac{180^ \circ - \alpha }{2}= \frac{ \alpha }{2}\)
To pozwoli zapisać wzór na pole jako funkcję zmiennej x. Dalej działaj osobiście.....
Nie masz wymaganych uprawnień, aby zobaczyć pliki załączone do tego posta.

radagast
Guru
Guru
Posty: 16726
Rejestracja: 09 lis 2010, 08:38
Lokalizacja: Warszawa
Podziękowania: 25 razy
Otrzymane podziękowania: 7062 razy
Płeć:

Re: Zadanie optymalizacyjne

Post autor: radagast » 08 lut 2019, 15:45

panb pisze: Używając oznaczeń jak na rysunku powyżej.
  • \(P=xy\\
    y=a-p-q\\
    \frac{x}{p}= \tg \alpha \,\,\, \wedge \,\,\, \frac{q}{x}= \tg \beta \\
    \beta = 90^ \circ -\frac{180^ \circ - \alpha }{2}= \frac{ \alpha }{2}\)
To pozwoli zapisać wzór na pole jako funkcję zmiennej x. Dalej działaj osobiście.....
można ciut prościej:
\(\frac{x}{a-y}=\sin \alpha\)
stąd \(x=(a-y)\sin \alpha\)
czyli \(P(y)=y(a-y)\sin \alpha\), \(y \in \left(0,a \right)\)
oczywiście \(P_{max}=P( \frac{a}{2})= \frac{a^2}{4} \sin \alpha\)
zmienne p,q oraz kąt \(\beta\) - nie potrzebne :)
Swoją drogą, zastanawiam się jaka pułapka jest w tym zadaniu, (bo zdaję się , jakaś jest )

Blake
Witam na forum
Witam na forum
Posty: 4
Rejestracja: 18 lis 2018, 00:56
Podziękowania: 1 raz
Płeć:

Post autor: Blake » 08 lut 2019, 20:22

Dziękuje bardzo za pomoc, też mi się wydaje, że jest jakiś haczyk w tym zadaniu, wkrótce się wszystkiego dowiem.

Panko
Fachowiec
Fachowiec
Posty: 2939
Rejestracja: 20 gru 2013, 22:41
Lokalizacja: Radom
Otrzymane podziękowania: 1554 razy
Płeć:

Re: Zadanie optymalizacyjne

Post autor: Panko » 08 lut 2019, 21:52

Można jeszcze prościej
Odnoszę się do pierwotnego rysunku
Weźmy i przesuńmy równolegle \(\Delta\) prostokątny o przyprostokątnych \(p,x\) wzdłuż boku niebieskiego , tak ,że niebieskie odcinki \(p, q\) wyznaczą jeden odcinek .
Wtedy pole prostokąta o wymiarach \(x,y\) będzie równe polu powstałego równoległoboku ( trzeba to narysować)
Oraz boki równoległoboku sumują się do długości ramienia \(\Delta\) czyli \(a\) i jego pole równoległoboku = \(\sin \alpha \cdot x_1 \cdot y_1\) , gdzie \(x_1,y_1\) to długości boków powstałego równoległoboku .
Dostajemy natychmiast, bez ich liczenia ,że maksimum pola prostokąta , realizowane jest gdy \(x_1=y_1=\frac{a}{2}\)
...........................................................................

Panko
Fachowiec
Fachowiec
Posty: 2939
Rejestracja: 20 gru 2013, 22:41
Lokalizacja: Radom
Otrzymane podziękowania: 1554 razy
Płeć:

Re: Zadanie optymalizacyjne

Post autor: Panko » 08 lut 2019, 22:01

Do powyższego postu .
NIe zawsze( czyli zależy od kąta \(\alpha\) taki prostokąt ( będący kwadratem) istnieje .
Powyższe wymaga naprawy

radagast
Guru
Guru
Posty: 16726
Rejestracja: 09 lis 2010, 08:38
Lokalizacja: Warszawa
Podziękowania: 25 razy
Otrzymane podziękowania: 7062 razy
Płeć:

Post autor: radagast » 08 lut 2019, 22:15

Warto też zauważyć , że kąt \(\alpha\) musi być ostry (dla rozwartego w ogóle nie da się wpisać prostokąta) .