Tożsamość trygonometryczna

Zadania niepasujące do innych kategorii.
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Gog
Witam na forum
Witam na forum
Posty: 1
Rejestracja: 21 sty 2023, 13:12
Podziękowania: 1 raz
Płeć:

Tożsamość trygonometryczna

Post autor: Gog » 21 sty 2023, 14:12

\(( \sqrt{ \frac{1+\sin \alpha }{1-\sin \alpha } } - \frac{1-\sin \alpha }{1+\sin \alpha } ) ^ 2= 4\tg^ 2 \alpha\)
Ostatnio zmieniony 21 sty 2023, 17:15 przez Jerry, łącznie zmieniany 1 raz.
Powód: Poprawa kodu: \sin

Awatar użytkownika
Jerry
Fachowiec
Fachowiec
Posty: 2678
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 34 razy
Otrzymane podziękowania: 1402 razy

Re: Tożsamość trygonometryczna

Post autor: Jerry » 21 sty 2023, 17:39

To nie jest tożsamość! Wystarczy, że sprawdzisz różność dla \(\alpha={\pi\over6}\) :idea:

Ale jest, dla \(\cos\alpha\ne0\), tożsamością
\(\left(\sqrt{ \frac{1+\sin \alpha }{1-\sin \alpha } } - \sqrt{ \frac{1-\sin \alpha }{1+\sin \alpha }} \right) ^ 2= 4\tg^ 2 \alpha\)
\(L_T=\left(\sqrt{ \frac{(1+\sin \alpha)^2 }{1-\sin^2 \alpha } } - \sqrt{ \frac{(1-\sin \alpha)^2 }{1-\sin^2 \alpha }} \right) ^ 2=\)\(
\left( \frac{1+\sin \alpha }{|\cos \alpha| } - \frac{1-\sin \alpha}{|\cos \alpha| } \right) ^ 2={4\sin^2\alpha\over\cos^2\alpha}=P_T\)

Pozdrawiam
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .