Trójkąty równoramienne, na których opisano okrąg o R=1.

Zadania niepasujące do innych kategorii.
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Januszgolenia
Fachowiec
Fachowiec
Posty: 1608
Rejestracja: 01 lip 2010, 10:44
Podziękowania: 1680 razy
Otrzymane podziękowania: 3 razy

Trójkąty równoramienne, na których opisano okrąg o R=1.

Post autor: Januszgolenia » 26 lip 2022, 14:28

Rozpatrujemy wszystkie trójkąty równoramienne ostrokątne ABC (IACI=IBCI), na których opisano okrąg o promieniu R=1. Niech x oznacza odległość środka okręgu od podstawy AB trójkąta.
a) Wykaż, że pole P każdego z tych trójkątów, jako funkcja długości x, wyraża się wzorem \(P(x)=(x+1) \cdot \sqrt{1-x^2}\).
b) Wyznacz dziedzinę funkcji P.
c) Oblicz długość x tego z rozpatrywanych trójkątów, który ma największe pole. Oblicz to największe pole.

Awatar użytkownika
Jerry
Fachowiec
Fachowiec
Posty: 2274
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 30 razy
Otrzymane podziękowania: 1060 razy

Re: Trójkąty równoramienne, na których opisano okrąg o R=1.

Post autor: Jerry » 26 lip 2022, 18:40

Fakt: Skoro trójkąt jest ostrokątny, to środek okręgu opisanego na nim zawiera się w wysokości!
Przyjmijmy oznaczenia jak na rysunku:
Geogebra online(6).png
  1. z \(\Delta MBQ\) i tw. Pitagorasa: \(|MB|=\sqrt{1-x^2}\)
  2. \(p(x)={1\over2}\cdot2\sqrt{1-x^2}\cdot(1+x)=(x+1)\sqrt{1-x^2}\wedge x\in(0;1)\)
    albo, inaczej
    \(p(x)=\sqrt{(x+1)^3(1-x)}\)
  3. Rozpatrzmy \(y=f(x)=(x+1)^3(1-x)\) określoną w \(D=(0;1)\)
    • \(\Lim_{x\to0^+}f(x)=\Lim_{x\to1^-}f(x)=0\)
    • \(y'=f'(x)=4(x+1)^2(-x+{1\over2})\wedge D'=D\)
    • WKIE:\(y'=0\iff x={1\over2}\)
    • WDIE: Pochodna zmienia swój znak w \(x={1\over2}\) z dodatniego na ujemny, zatem \(\begin{cases}x={1\over2}\\y_{\max}=f({1\over2})={27\over16}=M\end{cases}\)
Odpowiedź: Największe pole, równe \({3\sqrt3\over4}\), ma trójkąt równoboczny (dla \(x={1\over2}\))

Pozdrawiam
Nie masz wymaganych uprawnień, aby zobaczyć pliki załączone do tego posta.
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .

Awatar użytkownika
Jerry
Fachowiec
Fachowiec
Posty: 2274
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 30 razy
Otrzymane podziękowania: 1060 razy

Re: Trójkąty równoramienne, na których opisano okrąg o R=1.

Post autor: Jerry » 26 lip 2022, 18:51

Albo, polecam,:
Jerry pisze:
26 lip 2022, 18:40
\(p(x)=\sqrt{(x+1)^3(1-x)}\wedge 0<x<1\)
Z nierówności pomiędzy średnimi:
\(\bigwedge\limits_{0<x<1} \dfrac{3(x+1)+(3-3x)}{4}\ge\sqrt[4]{(x+1)^3(3-3x)}\) i równość zachodzi dla \(x+1=1-x\)

\(\bigwedge\limits_{0<x<1} \dfrac{3}{2}\ge\sqrt[4]{3\left(p(x)\right)^2}\) i równość zachodzi dla \(x={1\over2}\)

Pozdrawiam
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .