Nierownosc logarytmiczna

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Mafmayks
Rozkręcam się
Rozkręcam się
Posty: 70
Rejestracja: 09 kwie 2021, 22:21
Podziękowania: 8 razy
Płeć:

Nierownosc logarytmiczna

Post autor: Mafmayks » 11 paź 2021, 23:32

\( \log_{|x|} \frac{2x^{2}-x}{2}>2 \)

Czesc moglby mi ktos Pomoc w tym zadaniu. Jakos mi nie wychadza przedxialy itp
Pozdrawiam
Ostatnio zmieniony 12 paź 2021, 00:47 przez Jerry, łącznie zmieniany 1 raz.
Powód: poprawa kodu;{|x|}

Awatar użytkownika
Jerry
Fachowiec
Fachowiec
Posty: 1572
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 23 razy
Otrzymane podziękowania: 729 razy

Re: Nierownosc logarytmiczna

Post autor: Jerry » 12 paź 2021, 01:10

\(D=\left\{x\in\rr; \ |x|>0\wedge |x|\ne1\wedge\frac{2x^{2}-x}{2}>0\right\}=(-\infty;-1)\cup(-1;0) \cup\left({1\over2};1\right) \cup(1;+\infty)\)
\[ \log_{|x|} \frac{2x^{2}-x}{2}>\log_{|x|}|x|^2 \]
wobec monotoniczności funkcji logarytmicznej
\[\left( \begin{cases} |x|<1\\\frac{2x^{2}-x}{2}<x^2\end{cases}\vee\begin{cases} |x|>1\\\frac{2x^{2}-x}{2}>x^2\end{cases}\right)\wedge x\in D \]
\[x\in\left({1\over2};1\right)\vee x\in (-\infty;-1)\]
Pozdrawiam
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .