Ciągłość funkcji

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Sciurius
Rozkręcam się
Rozkręcam się
Posty: 34
Rejestracja: 05 maja 2020, 16:38
Podziękowania: 4 razy
Otrzymane podziękowania: 4 razy
Płeć:

Ciągłość funkcji

Post autor: Sciurius » 20 maja 2020, 15:40

Szukam informacji o ciągłości funkcji, konkretniej zastanawiam się czy np.
\(f:R\to R\)
\(f(x)= \sqrt{-(x-4)^2(x-1)^2} \)
jest ciągła dokładnie w dwóch punktach? Oczywiście chodzi o pkt. (1,0), (4,0)
Z jednej strony sprawdzając metodą typową dla szkoły średniej \(f(x_0)= \Lim_{x\to x_0} f(x)\) wychodzi że jest ciągła z drugiej strony w bardziej formalnych definicjach (z których nie wiele rozumiem) jest mowa o otoczeniu punktu a takowego te punkty nie mają
Więc jest ciągła czy nie jest?
Czytałem także o np. funkcji Dirichleta ale interesują mnie funkcje które byłyby \(R\to R\) i ciągłe w skończonej ilości punktów

Jak macie jakieś inne ciekawe funkcje albo artykuły w tym temacie do poczytania tudzież jakieś przystępne wytłumaczenie formalnych definicji też chętnie zobaczę ;)

Awatar użytkownika
panb
Expert
Expert
Posty: 3608
Rejestracja: 26 kwie 2010, 22:54
Lokalizacja: Nowiny Wielkie
Podziękowania: 6 razy
Otrzymane podziękowania: 1268 razy
Płeć:

Re: Ciągłość funkcji

Post autor: panb » 20 maja 2020, 16:56

Dziedziną tej funkcji jest zbiór {1,4}. Trudno więc mówić o ciągłości.
Zrezygnuj z minusa (i kwadratów), a będzie ciekawiej.

Sciurius
Rozkręcam się
Rozkręcam się
Posty: 34
Rejestracja: 05 maja 2020, 16:38
Podziękowania: 4 razy
Otrzymane podziękowania: 4 razy
Płeć:

Re: Ciągłość funkcji

Post autor: Sciurius » 20 maja 2020, 17:06

Właśnie chodzi mi o to czy istnieje taka funkcja która jest ciągła np. w dokładnie 3 punktach albo tylko w 2 i jeśli nie może taka istnieć to dlaczego
Pozdrawiam

Sciurius

Awatar użytkownika
panb
Expert
Expert
Posty: 3608
Rejestracja: 26 kwie 2010, 22:54
Lokalizacja: Nowiny Wielkie
Podziękowania: 6 razy
Otrzymane podziękowania: 1268 razy
Płeć:

Re: Ciągłość funkcji

Post autor: panb » 21 maja 2020, 18:16

Do ciągłości potrzebna jest granica, a do granicy - otoczenie punktu.
Nie można mówić o granicy/ciągłości funkcji określonej na zbiorze skończonym.