Nierówność logarytmiczna + trygonometryczna

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
not_a_genius
Dopiero zaczynam
Dopiero zaczynam
Posty: 18
Rejestracja: 20 lut 2019, 18:00
Podziękowania: 1 raz
Płeć:

Nierówność logarytmiczna + trygonometryczna

Post autor: not_a_genius » 17 cze 2019, 16:07

Rozwiąż nierówność w przedziale \((0, 2\pi>\)

\(\log^{2}_{2} sin2x \leq \frac{1}{4}\)

Wyznaczyłem dziedzinę: \((0, \frac{\pi}{2}) \cup (\pi, \frac{3\pi}{2})\) i doprowadziłem nierówność to tej postaci:

\(\log_{\frac{1}{4}}sin2x \leq \frac{1}{2} \quad \wedge \quad \log_{\frac{1}{4}}sin2x \geq -\frac{1}{2}\).
Następnie otrzymałem:
\(sin2x \geq \frac{\sqrt{2}}{2} \quad \wedge \quad sin2x \leq 2\)
Tutaj już nie wiem jak to rozwiązać.

Awatar użytkownika
Scino
Rozkręcam się
Rozkręcam się
Posty: 54
Rejestracja: 23 wrz 2018, 18:55
Otrzymane podziękowania: 13 razy
Płeć:

Post autor: Scino » 17 cze 2019, 22:48

Nie wiem jak doszedłeś do logarytmów o podstawie \(\frac{1}{4}\), ja zostałem przy \(2\):

\(\log_{2}^{2} \sin{2x} \le \frac{1}{4} \iff -\frac{1}{2} \le \log_{2} \sin{2x} \le \frac{1}{2} \\ \\

\log_{2}{2^{ -\frac{1}{2} }}\le \log_{2} \sin{2x} \le\log_{2}{2^ \frac{1}{2} } \iff \log_{2}{ \frac{ \sqrt{2} }{2}} \le \log_{2} \sin{2x} \le \log_{2}{ \sqrt{2} }\\ \\

\sin {2x} \in \left[\frac{ \sqrt{2} }{2}; \sqrt{2} \right] \So \sin {2x} \ge \frac{ \sqrt{2} }{2} \\ \\ 2x \in \left[ \frac{\pi}{4}+2 \pi k ; \frac{3\pi}{4}+2 \pi k \right], k \in \mathbb{Z} \\ \\ x \in \left[ \frac{\pi}{8}+ \pi k ; \frac{3 \pi}{8} + {\pi k } \right], k \in \mathbb{Z}\)


Mam nadzieję, że się nigdzie nie pomyliłem.

Galen
Guru
Guru
Posty: 18184
Rejestracja: 17 sie 2008, 15:23
Podziękowania: 1 raz
Otrzymane podziękowania: 9030 razy

Post autor: Galen » 17 cze 2019, 22:53

\(log_2sin2x\ge-\frac{1}{2}\;\;\;\;i\;\;\;\;\;log_2 sin2x\le\frac{1}{2}\\sin2x \ge \frac{ \sqrt{2} }{2}\;\;\;\;i\;\;\;\;sin2x \le \sqrt{2}\)
Rysujesz sinusoidę o okresie \(2\pi\),następnie zacieśniasz (zagęszczasz) ją dwukrotnie.
Teraz okres funkcji to \(\pi\)
Kładziesz na to prostą poziomą \(y= \frac{ \sqrt{2} }{2}\)
Odczytasz przedział,w którym zagęszczona sinusoida jest powyżej prostej,bo poniżej pierwiastka z dwóch jest wszędzie.
\(x\in< \frac{\pi}{8}; \frac{\pi}{2}- \frac{\pi}{8}> \cup <\pi+ \frac{\pi}{8}; \frac{3\pi}{2}- \frac{\pi}{8}>\)
\(x\in< \frac{\pi}{8}; \frac{3}{8}\pi> \cup < \frac{9}{8}\pi; \frac{11}{8}\pi>\)
Wszystko jest trudne,nim stanie się proste.

radagast
Guru
Guru
Posty: 16687
Rejestracja: 09 lis 2010, 08:38
Lokalizacja: Warszawa
Podziękowania: 22 razy
Otrzymane podziękowania: 7044 razy
Płeć:

Post autor: radagast » 18 cze 2019, 08:58

A obrazek jest taki:
ScreenHunter_718.jpg
Nie masz wymaganych uprawnień, aby zobaczyć pliki załączone do tego posta.

not_a_genius
Dopiero zaczynam
Dopiero zaczynam
Posty: 18
Rejestracja: 20 lut 2019, 18:00
Podziękowania: 1 raz
Płeć:

Re: Nierówność logarytmiczna + trygonometryczna

Post autor: not_a_genius » 18 cze 2019, 11:38

Źle zapisałem pierwsze równanie. Powinno one być takie: \(\log^{2}_{\frac{1}{4}} sin2x \leq \frac{1}{4}\). Przepraszam za wprowadzenie was w błąd.