ZW - Funkcja wykładnicza

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
avleyi
Często tu bywam
Często tu bywam
Posty: 150
Rejestracja: 15 maja 2022, 13:41
Podziękowania: 164 razy
Płeć:

ZW - Funkcja wykładnicza

Post autor: avleyi » 19 wrz 2022, 21:52

Potrzebuje pomocy, nie umiem wyznaczyć zbioru wartości pewnej funkcji, nie umiem jej narysować (przekształceń itp.) Mógłby ktoś pomóc mi z rozwiązaniem tego i wytłumaczyć?

Wyznacz zbiór wartości funkcji:
\( f(x) = ( \frac{1}{4} )^x - 2^{-x+1}\)

Awatar użytkownika
Jerry
Fachowiec
Fachowiec
Posty: 2370
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 31 razy
Otrzymane podziękowania: 1141 razy

Re: ZW - Funkcja wykładnicza

Post autor: Jerry » 19 wrz 2022, 22:12

\( f(x) = ( \frac{1}{4} )^x - 2^{-x+1}=(2^{-x})^2-2\cdot2^{-x}=(2^{-x}-1)^2-1\ge -1\)
i równość zachodzi dla
\(2^{-x}=1\iff x=0\)

Pozdrawiam

[edited] wykres
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .

Awatar użytkownika
eresh
Guru
Guru
Posty: 16096
Rejestracja: 04 cze 2012, 13:41
Podziękowania: 4 razy
Otrzymane podziękowania: 9641 razy
Płeć:

Re: ZW - Funkcja wykładnicza

Post autor: eresh » 20 wrz 2022, 08:43

avleyi pisze:
19 wrz 2022, 21:52
Potrzebuje pomocy, nie umiem wyznaczyć zbioru wartości pewnej funkcji, nie umiem jej narysować (przekształceń itp.) Mógłby ktoś pomóc mi z rozwiązaniem tego i wytłumaczyć?

Wyznacz zbiór wartości funkcji:
\( f(x) = ( \frac{1}{4} )^x - 2^{-x+1}\)
\(f(x)=(\frac{1}{4})^x-2^{-x}\cdot 2\\
f(x)=(\frac{1}{2})^{2x}-2\cdot (\frac{1}{2})^x\\
(\frac{1}{2})^x=t, t>0\\
g(t)=t^2-2t\\
p=\frac{2}{2}=1\\
g(1)=-1\\
\Lim_{t\to 0^+}(t^2-t)=0\\
\Lim_{t\to +\infty}(t^2-2t)=+\infty\\
ZW_f=ZW_g=[-1,\infty)\)
Podziękuj osobie, która rozwiązała Ci zadanie klikając na ikonkę 👍