rownanie stycznej do wykresu funkcji

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
mala95
Witam na forum
Witam na forum
Posty: 1
Rejestracja: 11 sty 2022, 16:53
Podziękowania: 1 raz

rownanie stycznej do wykresu funkcji

Post autor: mala95 » 11 sty 2022, 17:33

Poprosze pomoc w rozwiazaniu zadan:

1) \( f(x) = \frac{x^3\ }{2} - 2x^2\ +3\) w punkcie (2,f(2))

2) \( g(x) = \frac{2^x\ }{x + 1} \) w punkcie (-2,g(-2))

Awatar użytkownika
szw1710
Stały bywalec
Stały bywalec
Posty: 783
Rejestracja: 04 sty 2020, 13:47
Lokalizacja: Cieszyn
Podziękowania: 4 razy
Otrzymane podziękowania: 280 razy
Płeć:

Re: rownanie stycznej do wykresu funkcji

Post autor: szw1710 » 11 sty 2022, 18:47

Równanie stycznej do wykresu \(y=f(x)\) w punkcie \(x=a\):\[y=f'(a)(x-a)+f(a).\]

2. Mamy \(a=-2\) oraz \(g(a)=\frac{2^{-2}}{-2+1}=-\frac{1}{4}.\) Z kolei\[g'(x)=\frac{2^x\ln 2(x+1)-2^x}{(x+1)^2}=\frac{-1-\ln 2}{4}.\]Tak więc styczna ma równanie\[y=\frac{-1-\ln 2}{4}(x+2)-\frac{1}{4}.\]Uporszczenie sobie daruję.

Zadanie 1. zrobisz podobnie.
Oglądaj moją playlistę Matura rozgrzewka.