Punkt magicznie wraca do dziedziny?

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Awatar użytkownika
Lerxst
Dopiero zaczynam
Dopiero zaczynam
Posty: 12
Rejestracja: 30 wrz 2020, 22:44
Podziękowania: 5 razy

Punkt magicznie wraca do dziedziny?

Post autor: Lerxst » 26 wrz 2021, 18:27

Zadanie

funkcję \( f(x)=\frac{x-3}{x^2-x-6}\) przesunięto o wektor \([-2,1]\) a następnie przesunięto odbito symetrycznie względem początku układu współrzędnych czyli mówiąc krótko zrobiono z \(f(x)\) funkcję \(f(-x-2)-1\)

Z samym zadaniem problemu nie miałem, ale:

Mam pytanie odnośnie dziedziny nowej funkcji. Dlaczego wyznaczając tę dziedzinę - tu wynosi ona \( \rr\setminus\{-1,4\} \) włączamy do niej z powrotem punkty które wyleciały z dziedziny funkcji \(f(x)\) - czyli \(-2 \) i \(+3\)? Przecież przesunęliśmy funkcję gdzie w dziedzinie nie było wspomnianych przeze mnie punktów, więc na jakiej zasadzie w nowej funkcji nagle one się znowu pojawiają?

Jak w teksie zapisać R/{-1, 4}?
Ostatnio zmieniony 26 wrz 2021, 18:55 przez Jerry, łącznie zmieniany 1 raz.
Powód: poprawa kodu; \setminus, \{\}
Mnie nie interesuje "co". Mnie interesuje "dlaczego"

Icanseepeace
Często tu bywam
Często tu bywam
Posty: 207
Rejestracja: 03 kwie 2021, 21:36
Podziękowania: 5 razy
Otrzymane podziękowania: 119 razy
Płeć:

Re: Punkt magicznie wraca do dziedziny?

Post autor: Icanseepeace » 26 wrz 2021, 18:57

Przesuwając funkcję tworzysz de facto nową funkcję.
To oznacza, że funkcja przed przesunięciem może mieć inną dziedzinę niż funkcja po przesunięciu.
Dlatego zwyczajowo zapisujemy:
\( g(x) = f(x - p) + q \) gdzie \( [p,q] \) jest wektorem przesunięcia. Przy takim zapisie nie ma również problemu z dziedzinami bo można wtedy pisać: \( D_f , D_g \) i doskonale wiemy która dziedzina odpowiada której funkcji.

Awatar użytkownika
Jerry
Fachowiec
Fachowiec
Posty: 1426
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 19 razy
Otrzymane podziękowania: 661 razy

Re: Punkt magicznie wraca do dziedziny?

Post autor: Jerry » 26 wrz 2021, 19:00

Lerxst pisze:
26 wrz 2021, 18:27
Jak w teksie zapisać R/{-1, 4}?
Po pierwsze: w techu, po drugie nie "pod warunkiem" tylko "bez", po trzecie

Kod: Zaznacz cały

\rr\setminus\{-1, 4\}
Ad rem:
Nie wiem, czemu uważasz, że coś wraca do dziedziny... wraz z przekształceniami funkcji "dziury w dziedzinie" również się przesuwają/odbijają i powstaje nowa dziedzina dla nowej funkcji!

Pozdrawiam
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .