Ilość liczb parzystych z jednym "0", dwiema "2" i jedną "6"

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
___tetmajer
Witam na forum
Witam na forum
Posty: 4
Rejestracja: 05 kwie 2021, 22:13
Podziękowania: 3 razy
Płeć:

Ilość liczb parzystych z jednym "0", dwiema "2" i jedną "6"

Post autor: ___tetmajer » 08 kwie 2021, 20:30

Ile jest liczb naturalnych parzystych, w których występuje dokładnie jedno zero, jedna szóstka oraz dwie dwójki?

Awatar użytkownika
eresh
Guru
Guru
Posty: 15374
Rejestracja: 04 cze 2012, 13:41
Podziękowania: 4 razy
Otrzymane podziękowania: 9136 razy
Płeć:

Re: Ilość liczb parzystych z jednym "0", dwiema "2" i jedną "6"

Post autor: eresh » 08 kwie 2021, 20:33

___tetmajer pisze:
08 kwie 2021, 20:30
Ile jest liczb naturalnych parzystych, w których występuje dokładnie jedno zero, jedna szóstka oraz dwie dwójki?
nieskończenie wiele ;)
Przepisałeś całą treść zadania?
Podziękuj osobie, która rozwiązała Ci zadanie klikając na ikonkę 👍

___tetmajer
Witam na forum
Witam na forum
Posty: 4
Rejestracja: 05 kwie 2021, 22:13
Podziękowania: 3 razy
Płeć:

Re: Ilość liczb parzystych z jednym "0", dwiema "2" i jedną "6"

Post autor: ___tetmajer » 08 kwie 2021, 20:59

Ajj oczywiście, pomyłka :) liczby są ośmiocyfrowe**

Awatar użytkownika
eresh
Guru
Guru
Posty: 15374
Rejestracja: 04 cze 2012, 13:41
Podziękowania: 4 razy
Otrzymane podziękowania: 9136 razy
Płeć:

Re: Ilość liczb parzystych z jednym "0", dwiema "2" i jedną "6"

Post autor: eresh » 08 kwie 2021, 21:17

z zerem na końcu:
miejsca na 2 dwójki - \({7\choose 2}\)
miejsce na szóstkę - 5 sposobow wyboru
resztę miejsc uzupełniamy cyframi ze zbioru \(\{1,3,4,5,7,8,9\}\) - na \(7^4\) sposobów
z zerem na końcu jest \({7\choose 2}\cdot 5\cdot 7^4\) liczb

z dwójką na końcu
0 możemy wrzucić na jedno z 4 miejsc (nie może być na pierwszym miejscu)
druga dwójka - na 4 sposoby
szóstka - 3 sposoby
reszta miejsc - \(7^2\) sposobów
mamy \(4\cdot 4\cdot 3\cdot 7^2\) liczb

z szóstką na końcu: \(6\cdot {6\choose 2}\cdot 7^4\) liczb

z ósemką lub czwórką na końcu: \(2\cdot 6\cdot {6\choose 2}\cdot 4\cdot 7^3\) liczb

pozostaje zsumować
Podziękuj osobie, która rozwiązała Ci zadanie klikając na ikonkę 👍