wyznacz tangens kąta

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
LuckyLuck
Czasem tu bywam
Czasem tu bywam
Posty: 139
Rejestracja: 03 lut 2019, 17:42
Podziękowania: 57 razy
Płeć:

wyznacz tangens kąta

Post autor: LuckyLuck » 06 kwie 2020, 14:20

wyznacz tangens kąta jaki tworzą dwie sąsiednie ściany boczne w ostrosłupie prawidłowym czworokątnym, w którym krawędź boczna jest dwa razy dłuższa od krawędzi podstawy.

Awatar użytkownika
eresh
Mistrz
Mistrz
Posty: 14386
Rejestracja: 04 cze 2012, 13:41
Podziękowania: 3 razy
Otrzymane podziękowania: 8462 razy
Płeć:

Re: wyznacz tangens kąta

Post autor: eresh » 06 kwie 2020, 14:28

\(h_b\) - wysokość ściany bocznej opadająca na krawędź podstawy
h - wysokość ściany bocznej opadająca na krawędź boczną
a - krawędź podstawy
2a - krawędź boczna
screenshot.png
\(h^2_b+(0,5a)^2=(2a)^2\\
h_b^2=\frac{15}{4}a^2\\
h_b=\frac{\sqrt{15}}{2}a\)


\(\frac{1}{2}ah_b=\frac{1}{2}2ah\\
\frac{\sqrt{15}a^2}{2}=2ah\\
h=\frac{a\sqrt{15}}{4}\)


\((a\sqrt{2})^2=h^2+h^2-2h^2\cos\alpha\\
\frac{15}{8}a^2\cos\alpha=\frac{15}{8}a^2-2a^2\\
\frac{15}{8}a^2\cos\alpha=-\frac{1}{8}a^2\\
\cos\alpha=\frac{-1}{15}\\
\sin\alpha=\frac{4\sqrt{14}}{15}\\
\tg\alpha=-4\sqrt{14}\)
Nie masz wymaganych uprawnień, aby zobaczyć pliki załączone do tego posta.

Galen
Guru
Guru
Posty: 18336
Rejestracja: 17 sie 2008, 15:23
Podziękowania: 3 razy
Otrzymane podziękowania: 9102 razy

Re: wyznacz tangens kąta

Post autor: Galen » 06 kwie 2020, 14:57

Oznaczenia:
ABCD wierzchołki podstawy.
\(|AB|=|BC|=|CD|=|AD|=a\\|AW|=|BW|=|CW|=|DW|=2a\)
W wierzchołek ostrosłupa
P punkt na krawędzi DW
PA i PC są prostopadłe do krawędzi DW,
W trójkącie ADW liczysz wysokość h między ramionami i wysokość AP.
\(h^2+(\frac{a}{2})^2=(2a)^2\\h^2=\frac{15}{4 }a^2\\h=\frac{\sqrt{15}}{2}a\)
Przyrównując pole ściany bocznej policzysz |AP|=|CP|
\(0,5 \cdot a \cdot h=0,5 \cdot 2a \cdot |AP|\\|AP|= \frac{ \sqrt{15} }{4}a\)
Trójkąt ACP jest równoramienny
\(|AC|=a \sqrt{2}\\|AP|=|CP|= \frac{a \sqrt{15} }{4}\)
tw.cosinusów
Otrzymasz cos kąta APC
Z jedynki trygonom. liczysz sin,a na koniec tg.
Wszystko jest trudne,nim stanie się proste.