Ostrosłup prawidłowy trójkątny

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Ewcia91
Dopiero zaczynam
Dopiero zaczynam
Posty: 13
Rejestracja: 08 mar 2010, 23:43
Podziękowania: 16 razy

Ostrosłup prawidłowy trójkątny

Post autor: Ewcia91 » 08 mar 2010, 23:55

Zastanawiam się, czy dobrze rozwiązuję, ale nie mam odpowiedzi... Liczę na pomoc kogoś dobrego!

Dany jest ostrosłup prawidłowy trójkątny, w którym krawędź boczna jest dwa razy dłuższa
niż krawędź podstawy. Ostrosłup ten podzielono płaszczyzna przechodzącą przez krawędź
podstawy na dwie bryły o tej samej objętości. Wyznaczyć tangens kata nachylenia
tej płaszczyzny do płaszczyzny podstawy. Sporządzić rysunek.

Awatar użytkownika
anka
Expert
Expert
Posty: 6571
Rejestracja: 30 sty 2009, 00:25
Podziękowania: 26 razy
Otrzymane podziękowania: 1113 razy
Płeć:

Post autor: anka » 09 mar 2010, 02:04

\(\frac{\sqrt{11}}{2}\) ?
Znasz odpowiedź do zadania, to ją podaj. Łatwiej będzie sprawdzić czy w rozwiązaniu zadania nie ma błędu.

BetrR65
Często tu bywam
Często tu bywam
Posty: 159
Rejestracja: 21 lut 2010, 13:51
Otrzymane podziękowania: 1 raz

Post autor: BetrR65 » 09 mar 2010, 12:38

Mnie wyszło tyle samo...

Ewcia91
Dopiero zaczynam
Dopiero zaczynam
Posty: 13
Rejestracja: 08 mar 2010, 23:43
Podziękowania: 16 razy

Post autor: Ewcia91 » 10 mar 2010, 00:56

Kurczę, chyba jednak poproszę o pełne rozwiązanie, bo mi tyle nie wychodzi...
Dziękuję!!

BetrR65
Często tu bywam
Często tu bywam
Posty: 159
Rejestracja: 21 lut 2010, 13:51
Otrzymane podziękowania: 1 raz

Post autor: BetrR65 » 10 mar 2010, 18:29

Niech ABC - podstawa, O - środek podstawy, S - wierzchołek ostrosłupa, D - punkt w którym płaszczyzna przecina krawędź podstawy, E - środek krawędzi podstawy zawierającej określona płaszczyznę.
Dla wygody oznaczmy: wysokość ostrosłupa h, odległość punktu D od płaszczyzny podstawy H (do punktu E)
Pole podstawy: \(P_p= \frac{a^2 \sqrt{3} }{4}\)
\(V= \frac{1}{2} *P_p*h\)
Objętość ostrosłupa pod określoną w zadaniu płaszczyzną \(\frac{1}{2}V= \frac{1}{3}P_p*H\)
Z tw. Talesa i wyliczeń mamy, że 2h=H oraz odcinek \(OF= \frac{a \sqrt{3} }{ 6}\)
z tw. Pitagorasa mamy: \((2a)^2=h^2+( \frac{2}{3} \frac{a \sqrt{3} }{2} )^2 \Rightarrow h= \sqrt{ \frac{11}{3} } a \Rightarrow H= \frac{1}{2} \sqrt{ \frac{11}{3} } a\)
Tangens opisanego w zadaniu kąta wynosi
\(tg \alpha = \frac{H}{{ \frac{2}{3} \frac {a \sqrt{3} }{2} } }= \frac{ \sqrt{11} }{2}\)

Elwircia88
Dopiero zaczynam
Dopiero zaczynam
Posty: 19
Rejestracja: 13 kwie 2009, 16:50
Otrzymane podziękowania: 1 raz

Post autor: Elwircia88 » 16 mar 2010, 17:39

Też zaczęłam robić to zadanie tylko, że nie wiem dokladnie jak poprawadzić tę płaszczyznę...Czy mogłabym prosić aby ktoś narysował mi ten ostrosłup??? z góry dzięki :)