Objętość bryły - całka podwójna.

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
SITT95
Dopiero zaczynam
Dopiero zaczynam
Posty: 19
Rejestracja: 10 paź 2015, 12:08
Podziękowania: 9 razy
Płeć:

Objętość bryły - całka podwójna.

Post autor: SITT95 » 25 wrz 2016, 22:19

Witam serdecznie, mam do policzenia objętość bryły ograniczonej poniższymi powierzchniami na pomocą całki podwójnej.
Powierzchnie:

z= \(\sqrt{x^2+y^2}\)
z=3

Problem polega na tym, że nie potrafię określić obszaru całkowania i funkcji ograniczającej, czy ktoś mógłby mi pomóc? Będę niezmiernie wdzięczna :)

Awatar użytkownika
panb
Expert
Expert
Posty: 3173
Rejestracja: 26 kwie 2010, 22:54
Lokalizacja: Nowiny Wielkie
Otrzymane podziękowania: 1086 razy
Płeć:

Re: Objętość bryły - całka podwójna.

Post autor: panb » 25 wrz 2016, 23:27

Najpierw rysunek - będzie łatwiej zrozumieć.
graph.png
Szukana objętość to, mówiąc obrazowo, objętość walca o podstawie takiej jak to koło widoczne na obrazku minus objętość tego co jest pod stożkiem. Obszarem całkowania jest koło o promieniu 3.

\(V=\iint_D(3-\sqrt{x^2+y^2})dx dy\), gdzie \(D= \left\{ (x,y)\in \rr^2: x^2+y^2\le9\right\}\)

Jeśli znasz metodę zmiany zmiennych na cylindryczne \(\begin{cases} x=r\cos\varphi\\y=r\sin\varphi\\ |J|=r\end{cases}\) to całka stanie się dość prosta.
Teraz \(V=\iint_{D'}(3-r)rdrd\varphi\), gdzie \(D'= \left\{(r,\varphi): 0\le\varphi\le2\pi,\,\,\,0\le r \le 3 \right\}\)

Jak się nie pomyliłem, a ty dobrze policzysz, to wyjdzie \(V=9\pi\)
Nie masz wymaganych uprawnień, aby zobaczyć pliki załączone do tego posta.

SITT95
Dopiero zaczynam
Dopiero zaczynam
Posty: 19
Rejestracja: 10 paź 2015, 12:08
Podziękowania: 9 razy
Płeć:

Post autor: SITT95 » 25 wrz 2016, 23:39

Bardzo dziękuję za pomoc! :)