kosinus kata

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
inter
Czasem tu bywam
Czasem tu bywam
Posty: 96
Rejestracja: 01 cze 2016, 07:58
Podziękowania: 5 razy
Otrzymane podziękowania: 2 razy

kosinus kata

Post autor: inter » 14 lut 2019, 20:11

Rozważamy wszystkie czworokąty wypukłe ABCD w których suma długości odcinków AB i BC jest równa 6 ,\(| AD | = | DC |\) , odległość punktu D od przekątnej AC jest równa 1,5 oraz kąt BAC jest prosty. Oblicz cosinus kąta BCD w tym z rozważanych czworokątów który ma największe pole.

Panko
Fachowiec
Fachowiec
Posty: 2939
Rejestracja: 20 gru 2013, 22:41
Lokalizacja: Radom
Otrzymane podziękowania: 1554 razy
Płeć:

Re: kosinus kata

Post autor: Panko » 14 lut 2019, 22:47

\(|AB|= a, |BC|=b,|AC|=d,\) ,\(\\) \(a+b=6\) , \(a \in (0,3)\)
\(d= \sqrt{ 36-12a}\)
Pole czworokąta ABCD \((a)=\) \(\frac{1}{2} \cdot \frac{3}{2} \cdot d + \frac{1}{2} \cdot d \cdot a = \sqrt{36-12a} \cdot ( \frac{3}{4} +\frac{a}{2} )\) \(\)
\(P'(a)=0\) \(\\) \(a=\frac{3}{2}\) , i \(P(a)\) ma w nim maksimum
Wtedy \(|CA|= 3 \sqrt{2}\) .
Szukany kosinus możemy zachłannie policzyć licząc osobno sinusy i kosinusy kątów \(x = \angle BCA, y= \angle DCA\) , z powstałych trójkątów prostokątnych i stosując funkcję \(cos ( x+y)=....\) ( 3 minuty rachunków)