Oblicz cos kątów ostrych tego trójkata

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
avleyi
Często tu bywam
Często tu bywam
Posty: 236
Rejestracja: 15 maja 2022, 13:41
Podziękowania: 290 razy
Płeć:

Oblicz cos kątów ostrych tego trójkata

Post autor: avleyi » 14 lis 2022, 23:49

W trójkącie prostokątnym stosunek długości przeciwprostokątnej do sumy długości przyprostokątnych jest równy 0,(6). Oblicz cosinusy kątów ostrych tego trójkąta.

Awatar użytkownika
eresh
Guru
Guru
Posty: 16307
Rejestracja: 04 cze 2012, 13:41
Podziękowania: 4 razy
Otrzymane podziękowania: 9820 razy
Płeć:

Re: Oblicz cos kątów ostrych tego trójkata

Post autor: eresh » 15 lis 2022, 00:06

avleyi pisze:
14 lis 2022, 23:49
W trójkącie prostokątnym stosunek długości przeciwprostokątnej do sumy długości przyprostokątnych jest równy 0,(6). Oblicz cosinusy kątów ostrych tego trójkąta.
\( \frac{c}{a+b} = \frac{2}{3}\\
3c=2a+2b\\
b=1,5c-a\\
2a^2+2,25c^2-3ac=c^2\\
2a^2+1,25c^2-3ac=0\\
2 \cdot ( \frac{a}{c} )^2+1,25-3 \cdot ( \frac{a}{c} )=0\\
2\cos^2 \beta +1,25-3\cos \beta =0
\)

to równanie jest sprzeczne.
Na pewno dobrze przepisałaś treść zadania?
Podziękuj osobie, która rozwiązała Ci zadanie klikając na ikonkę 👍

avleyi
Często tu bywam
Często tu bywam
Posty: 236
Rejestracja: 15 maja 2022, 13:41
Podziękowania: 290 razy
Płeć:

Re: Oblicz cos kątów ostrych tego trójkata

Post autor: avleyi » 17 lis 2022, 11:12

Racja popełniłam blad powinno byx (
0,(8)

Awatar użytkownika
eresh
Guru
Guru
Posty: 16307
Rejestracja: 04 cze 2012, 13:41
Podziękowania: 4 razy
Otrzymane podziękowania: 9820 razy
Płeć:

Re: Oblicz cos kątów ostrych tego trójkata

Post autor: eresh » 17 lis 2022, 12:03

avleyi pisze:
17 lis 2022, 11:12
Racja popełniłam blad powinno byx (
0,(8)
no to wtedy:

\(\frac{c}{a+b} = \frac{8}{9}\\
9c=8a+8b\\
b=\frac{9}{8}c-a\\
a^2+(\frac{9}{8}c-a)^2=c^2\\
a^2+\frac{81}{64}c^2-\frac{9}{4}ac+a^2-c^2=0\\
2a^2+\frac{17}{64}c^2-\frac{9}{4}ac=0\\
2 \cdot ( \frac{a}{c} )^2+\frac{17}{64}-\frac{9}{4} \cdot ( \frac{a}{c} )=0\\
2\cos^2 \beta +\frac{17}{64}-\frac{9}{4}\cos \beta =0\)

wystarczy rozwiązać równanie kwadratowe, podstawiając \(\cos\beta =t\)
Podziękuj osobie, która rozwiązała Ci zadanie klikając na ikonkę 👍