Trapez równoramienny

Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
Marcajn
Witam na forum
Witam na forum
Posty: 5
Rejestracja: 14 maja 2010, 21:00
Podziękowania: 2 razy

Trapez równoramienny

Post autor: Marcajn » 15 maja 2010, 10:07

więc:
W trapezie równoramiennym jedna z podstaw jest 2 razy dłuższa od drugiej. Przekątna trapezu jest dwusieczną kąta przy dłuższej podstawie. Oblicz długości boków tego trapezu wiedząc ze jego pole jest równe 9 cm2. Ile jest równe pole koła opisanego na tym trapezie?
Dziękuję;)

irena
Guru
Guru
Posty: 22300
Rejestracja: 10 paź 2009, 19:08
Otrzymane podziękowania: 9851 razy
Płeć:

Post autor: irena » 15 maja 2010, 10:32

a- długość krótszej podstawy
2a- długość dłuższej podstawy

Narysuj trapez ABCD, gdzie AB to dłuższa podstawa. Przekątna AC jest dwusieczną kąta BAD. Czyli \(| \angle BAC|=| \angle CAD|=\alpha\). Zauważ, że również \(| \angle BAC|=| \angle DCA|\), bo są to kąty naprzemianległe.
Trójkąt ACD jest trójkątem równoramiennym, czyli ramiona trapezu maja długość równą długości krótszej podstawy: \(|AD|=|BC|=a\).
Poprowadź wysokości DE i CF z końców krótszej podstawy. \(|EF|=|CD|=a\), czyli: \(|AE|=|FB|=\frac{a}{2}\).
Trójkąt BCF jest prostokątny. |CF|=h. z twierdzenia Pitagorasa:
\(h^2+(\frac{a}{2})^2=a^2\\h^2=\frac{3}{4}a^2\\h=\frac{a\sqrt{3}}{2}\)

Pole trapezu:
\(P=9cm^2\\\frac{a+2a}{2}\cdot\ h=9\\\frac{3a}{2}\cdot\frac{a\sqrt{3}}{2}=9\\a^2=\frac{12}{\sqrt{3}}\\a^2=4\sqrt{3}\\a=2\sqrt[4]{3}cm\)

Długości boków trapezu: \(2\sqrt[4]{3}cm,\ 2\sqrt[4]{3}cm,\ 2\sqrt[4]{3}cm,\ 4\sqrt[4]{3}cm\).

Wróćmy do trójkąta BCF.
\(\frac{h}{a}=sin( \angle FBC)\\sin( \angle FBC)=\frac{\sqrt{3}}{2}\\| \angle FBC|=60^o\\| \angle CAB|=\frac{1}{2}| \angle FBC|=30^o\\| \angle BCA|=180^o-(60^o+30^o)=90^o\)

Trójkąt ABC jest więc trójkątem prostokątnym o przeciwprostokątnej \(|AB|=4\sqrt[4]{3}\). Okrąg opisany na tym trójkącie jest okręgiem opisanym na trapezie ABCD. Zatem, ponieważ przeciwprostokątna jest średnicą okręgu opisanego na trójkącie prostokątnym, więc \(2R=4\sqrt[4]{3}\), czyli \(R=2\sqrt[4]{3}cm\)

Pole koła opisanego na trapezie ABCD:
\(P_k=\pi\cdot(2\sqrt[4]{3})^2=4\sqrt{3}\pi\ cm^2\)

Marcajn
Witam na forum
Witam na forum
Posty: 5
Rejestracja: 14 maja 2010, 21:00
Podziękowania: 2 razy

Post autor: Marcajn » 15 maja 2010, 10:39

dzięki;)

mlodywks
Witam na forum
Witam na forum
Posty: 3
Rejestracja: 18 paź 2011, 19:03
Płeć:

Re: Trapez równoramienny

Post autor: mlodywks » 18 paź 2011, 19:09

Dzięki wielkie ale możesz mi powiedzieć z kąd się wziął zapis a(2)= \frac{12}{\sqrt{3}}

mlodywks
Witam na forum
Witam na forum
Posty: 3
Rejestracja: 18 paź 2011, 19:03
Płeć:

Re: Trapez równoramienny

Post autor: mlodywks » 18 paź 2011, 19:14

Przepraszam nie wiem jak edytować post ale tam miało byź a(kwadrat)= 12/pierwiastek z 3

irena
Guru
Guru
Posty: 22300
Rejestracja: 10 paź 2009, 19:08
Otrzymane podziękowania: 9851 razy
Płeć:

Post autor: irena » 18 paź 2011, 19:24

\(\frac{3a}{2}\cdot\frac{a\sqrt{3}}{2}=9\\\frac{3a^2\sqrt{3}}{4}=9\\3a^2\sqrt{3}=36\\a^2\sqrt{3}=12\\a^2=\frac{12}{\sqrt{3}}\)

mlodywks
Witam na forum
Witam na forum
Posty: 3
Rejestracja: 18 paź 2011, 19:03
Płeć:

Post autor: mlodywks » 18 paź 2011, 19:39

Wielkie dzięki za odpowiedź.

poetaopole
Stały bywalec
Stały bywalec
Posty: 344
Rejestracja: 15 kwie 2009, 07:26
Podziękowania: 189 razy
Płeć:

Re: Trapez równoramienny

Post autor: poetaopole » 20 wrz 2021, 15:24

Słyszał może ktoś o warunku okręgu opisanego na czworokącie?

Awatar użytkownika
Jerry
Fachowiec
Fachowiec
Posty: 1426
Rejestracja: 18 maja 2009, 09:23
Podziękowania: 19 razy
Otrzymane podziękowania: 661 razy

Re: Trapez równoramienny

Post autor: Jerry » 20 wrz 2021, 15:51

Tak, słyszałem, a Ty nie? Zajrzyj do ściągawki maturalnej!

Pozdrawiam
Teksty matematyczne pisz w kodzie \(\color{blue}{\LaTeX}\): https://zadania.info/fil/latex.pdf
Ktoś poświęcił Ci swój czas i pomógł? Podziękuj Mu klikając 👍 .