dowód 2
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij
-
- Fachowiec
- Posty: 1039
- Rejestracja: 04 sty 2020, 12:47
- Podziękowania: 9 razy
- Otrzymane podziękowania: 388 razy
- Płeć:
Re: dowód 2
Niech \(u,v\) będą odpowiednio pierwszym i drugim składnikiem tej sumy o lewej stronie. Oznaczmy też \(x=u+v\). Mamy\[u^3+v^3=18\quad \text{oraz}\quad uv=1.\]Zatem\[x^3=(u+v)^3=(u^3+v^3)+3uv(u+v)=18+3x,\]skąd\[x^3-3x-18=0.\]Po rozkładzie na czynniki:\[(x-3)(x^2+3x+6)=0,\]więc jedynym pierwiastkiem rzeczywistym jest \(x=3\).
Re: dowód 2
Rozumiem, że tak jest krócej, łatwiej i tak dalej, ale nigdy bym tego tak nie zrobił, a nawet nie pomyślałbym w ten sposób, pierwszy raz spotykam się z takim sposobem, także tu pojawia się moje pytanie czy istnieje jakiś inny sposób?szw1710 pisze: ↑15 mar 2023, 18:41 Niech \(u,v\) będą odpowiednio pierwszym i drugim składnikiem tej sumy o lewej stronie. Oznaczmy też \(x=u+v\). Mamy\[u^3+v^3=18\quad \text{oraz}\quad uv=1.\]Zatem\[x^3=(u+v)^3=(u^3+v^3)+3uv(u+v)=18+3x,\]skąd\[x^3-3x-18=0.\]Po rozkładzie na czynniki:\[(x-3)(x^2+3x+6)=0,\]więc jedynym pierwiastkiem rzeczywistym jest \(x=3\).
- nijak
- Czasem tu bywam
- Posty: 121
- Rejestracja: 09 lis 2021, 10:17
- Lokalizacja: 53°7'24"N 23°5'11"E
- Podziękowania: 40 razy
- Otrzymane podziękowania: 31 razy
- Płeć:
Re: dowód 2
Przyjmij, że \(9+4 \sqrt{5}= \frac{ (\sqrt{5} +3)^3}{8} \), zaś \(9- \sqrt{5}= \frac{ (3-\sqrt{5} )^3}{8} \), po zastosowaniu wzoru na sześcian sumy i różnicy.
Następnie wracamy do obliczeń:
\[ \sqrt[3]{ \frac{1}{8} \cdot (\sqrt{5} +3)^3}+ \sqrt[3]{ \frac{1}{8} \cdot (3-\sqrt{5} )^3 } =
\frac{\sqrt[3]{ (\sqrt{5} +3)^3}}{ \sqrt[3]{8} }+\frac{ \sqrt[3]{ (3- \sqrt{5})^3 }}{{ \sqrt[3]{8} } }=\\= \frac{ \sqrt{5}+3 }{2} + \frac{3- \sqrt{5} }{2} =3\]
Pozdrawiam
Następnie wracamy do obliczeń:
\[ \sqrt[3]{ \frac{1}{8} \cdot (\sqrt{5} +3)^3}+ \sqrt[3]{ \frac{1}{8} \cdot (3-\sqrt{5} )^3 } =
\frac{\sqrt[3]{ (\sqrt{5} +3)^3}}{ \sqrt[3]{8} }+\frac{ \sqrt[3]{ (3- \sqrt{5})^3 }}{{ \sqrt[3]{8} } }=\\= \frac{ \sqrt{5}+3 }{2} + \frac{3- \sqrt{5} }{2} =3\]
Pozdrawiam
Ostatnio zmieniony 16 mar 2023, 01:03 przez Jerry, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości: błędy merytoryczne
Powód: Poprawa wiadomości: błędy merytoryczne
Jeśli doceniasz pracę autora tego rozwiązania, to podziękuj mu zostawiając .
\(e^{i\pi}+1=0\)
\(e^{i\pi}+1=0\)
-
- Fachowiec
- Posty: 1039
- Rejestracja: 04 sty 2020, 12:47
- Podziękowania: 9 razy
- Otrzymane podziękowania: 388 razy
- Płeć:
Re: dowód 2
Gdybyś umiał rozwiązać zadanie jakąkolwiek metodą, nie wrzucałbyś go na forum.
[ciach]
Ostatnio zmieniony 18 mar 2023, 17:19 przez Jerry, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości: usunąłem zbędny komentarz
Powód: Poprawa wiadomości: usunąłem zbędny komentarz
- nijak
- Czasem tu bywam
- Posty: 121
- Rejestracja: 09 lis 2021, 10:17
- Lokalizacja: 53°7'24"N 23°5'11"E
- Podziękowania: 40 razy
- Otrzymane podziękowania: 31 razy
- Płeć:
Re: dowód 2
Dam ci rade to jest też jeden ze sposobów bardzo podobny:
\[\biggl (\sqrt[3]{9+ \sqrt{80} }+ \sqrt[3]{9- \sqrt{80} } \biggr)^3=x^3\]
po obliczeniach wiesz, że wynikiem jest liczba \(3\) więc \(3^3=27\) i masz równanie:
\[x^3-27=0\]
jedynym rozwiązaniem jest \(x=3\)
\[\biggl (\sqrt[3]{9+ \sqrt{80} }+ \sqrt[3]{9- \sqrt{80} } \biggr)^3=x^3\]
po obliczeniach wiesz, że wynikiem jest liczba \(3\) więc \(3^3=27\) i masz równanie:
\[x^3-27=0\]
jedynym rozwiązaniem jest \(x=3\)
Jeśli doceniasz pracę autora tego rozwiązania, to podziękuj mu zostawiając .
\(e^{i\pi}+1=0\)
\(e^{i\pi}+1=0\)
-
- Fachowiec
- Posty: 1039
- Rejestracja: 04 sty 2020, 12:47
- Podziękowania: 9 razy
- Otrzymane podziękowania: 388 razy
- Płeć:
Re: dowód 2
Czy przeprowadziłeś te rachunki szczegółowo? Istotnie, ten sposób jest właściwie wariantem metody proponowanej przeze mnie i po wykonaniu obliczeń wychodzi mi tak samo: \(18+3x=x^3\).
- nijak
- Czasem tu bywam
- Posty: 121
- Rejestracja: 09 lis 2021, 10:17
- Lokalizacja: 53°7'24"N 23°5'11"E
- Podziękowania: 40 razy
- Otrzymane podziękowania: 31 razy
- Płeć:
Re: dowód 2
Napisałem "bardzo podobny" mogłem dodać, że do poprzednich no ale się domyśliłeś o co mi chodziło
Pozdrawiam
Pozdrawiam
Jeśli doceniasz pracę autora tego rozwiązania, to podziękuj mu zostawiając .
\(e^{i\pi}+1=0\)
\(e^{i\pi}+1=0\)
-
- Fachowiec
- Posty: 1039
- Rejestracja: 04 sty 2020, 12:47
- Podziękowania: 9 razy
- Otrzymane podziękowania: 388 razy
- Płeć:
Re: dowód 2
Nie o to mi chodziło. Pytam, w jaki sposób doszedłeś tu do równania \(x^3=27\)? Bo wydaje mi się jednak, że rachunki prowadzą do równania \(18+3x=x^3\), czyli \((x-3)(x^2+3x+6)=0\), czyli to do tego, które wspominam. Natomiast po rozkładzie Twojego równania mamy \((x-3)(x^2+3x+9)=0\). Oba równania są w zbiorze \(\rr\) równoważne, bo mają identyczne zbiory rozwiązań.
Dalsza dyskusja rano. Teraz uciekam spać. Dobrej nocy.
- nijak
- Czasem tu bywam
- Posty: 121
- Rejestracja: 09 lis 2021, 10:17
- Lokalizacja: 53°7'24"N 23°5'11"E
- Podziękowania: 40 razy
- Otrzymane podziękowania: 31 razy
- Płeć:
Re: dowód 2
\[\biggl (\sqrt[3]{9+ \sqrt{80} }+ \sqrt[3]{9- \sqrt{80} } \biggr)=3,\] to \(3^3=27\) i po przeniesieniu na lewą stronę otrzymujemy równanie \(x^3-27=0.\) Już wiesz?
Dobranoc.
Dobranoc.
Ostatnio zmieniony 16 mar 2023, 00:30 przez grdv10, łącznie zmieniany 1 raz.
Powód: W trybie eksponowanym ([dtex]) przecinek dajemy w środowisku matematycznym, inaczej będzie złożony niepoprawnie.
Powód: W trybie eksponowanym ([dtex]) przecinek dajemy w środowisku matematycznym, inaczej będzie złożony niepoprawnie.
Jeśli doceniasz pracę autora tego rozwiązania, to podziękuj mu zostawiając .
\(e^{i\pi}+1=0\)
\(e^{i\pi}+1=0\)
-
- Fachowiec
- Posty: 1039
- Rejestracja: 04 sty 2020, 12:47
- Podziękowania: 9 razy
- Otrzymane podziękowania: 388 razy
- Płeć:
Re: dowód 2
Jeszcze aktualizowałem sterownik. Więc tu korzystasz z tego co masz udowodnić. Dochodzisz jedynie do wniosku, że jeśli\[ x=\sqrt[3]{9+ \sqrt{80} }+ \sqrt[3]{9- \sqrt{80}}\] oraz\[\biggl(\sqrt[3]{9+ \sqrt{80} }+ \sqrt[3]{9- \sqrt{80} } \biggr)=3,\]to \(x^3=27,\) więc \(x=3\). Wybacz słowa krytyki.
- nijak
- Czasem tu bywam
- Posty: 121
- Rejestracja: 09 lis 2021, 10:17
- Lokalizacja: 53°7'24"N 23°5'11"E
- Podziękowania: 40 razy
- Otrzymane podziękowania: 31 razy
- Płeć:
Re: dowód 2
Oj już tam słowa krytyki nazwij to lekkimi wątpliwościami, które każdy czasami miewa. O to tutaj chodzi żeby mieć "wątpliwość" a nie iść równiuteńko z innymi. Zwoje muszą pracować. Kogokolwiek perspektywa nie musi być jedyną perspektywą.
Miłej nocy, teraz już gaszę sterownik
Miłej nocy, teraz już gaszę sterownik
Jeśli doceniasz pracę autora tego rozwiązania, to podziękuj mu zostawiając .
\(e^{i\pi}+1=0\)
\(e^{i\pi}+1=0\)
Re: dowód 2
Panie starszy kolego wydaje mi się, że przy u powinno być do potęgi 3 tak jak v, a nie do drugiej.szw1710 pisze: ↑15 mar 2023, 18:41 Niech \(u,v\) będą odpowiednio pierwszym i drugim składnikiem tej sumy o lewej stronie. Oznaczmy też \(x=u+v\). Mamy\[u^2+v^3=18\quad \text{oraz}\quad uv=1.\]Zatem\[x^3=(u+v)^3=(u^3+v^3)+3uv(u+v)=18+3x,\]skąd\[x^3-3x-18=0.\]Po rozkładzie na czynniki:\[(x-3)(x^2+3x+6)=0,\]więc jedynym pierwiastkiem rzeczywistym jest \(x=3\).
-
- Fachowiec
- Posty: 1039
- Rejestracja: 04 sty 2020, 12:47
- Podziękowania: 9 razy
- Otrzymane podziękowania: 388 razy
- Płeć:
Re: dowód 2
Dziękuję za zauważenie omyłki pisarskiej - już poprawiłem.
[ciach]
Zamykam temat, bo merytoryka została wyczerpana.
Ostatnio zmieniony 18 mar 2023, 17:14 przez Jerry, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości: usunąłem zbędny komentarz
Powód: Poprawa wiadomości: usunąłem zbędny komentarz