Liczby, wielokąty

Pytania o rozwiązania zadań.
Otrzymałeś(aś) rozwiązanie do zamieszczonego zadania? - podziękuj autorowi rozwiązania! Kliknij Thank icon

Liczby, wielokąty

Postprzez angelika20590 » 31 Mar 2009, 20:38

Witam gorąco :) Zwracam się do Was z gorącą prośbą o pomoc... w rozwiązaniu zadań. Do piątku mam rozwiazać 30 zadań podobnych do tych, które są nizej ale niestety nie wiem jak sie za to zabrac i potrzebuje wzorów bym mogła sie sugerować na jakiś zadaniach. Bo u mnie z matematyczną stroną kiepsko raczej jestem humanistka i dlatego potrzebuje Waszej pomocy. Czy moglibyście mi pomoc w rozwiązaniu tych zadań 8 bym miała jakiś wzór do robienia własnych?? Bardzo prosze i z góry dziekuje

A o to te zadania:
1/ Oblicz pole trójkąta równoramiennego ABC, którym AB=24 i AC=BC=13.
2/ Liczby 4, 10, c są długościami boków trójkąta równoramiennego. Oblicz c.
3/ Liczby 6, 10, c są długościami boków trójkąta równoramiennego. Oblicz c.
4/ Liczby 6, 10, c są długościami boków trójkąta prostokątnego. Oblicz c.
5/ Liczby x-1,x, 5 są długościami boków trójkąta równoramiennego. Oblicz x.
6/ Obwód czworokąta wypukłego ABCD jest równy 50cm. Obwód trójkąta ABD jest równy 46cm, a obwód trójkąta BCD jest równy 36cm. Oblicz długość przekątnej BD.
7/ Ile jest liczb naturalnych czterocyfrowych takich, że w ich zapisie dziesiętnym występuje jedna cyfra nieparzysta i trzy cyfry parzyste? Uwaga: przypominamy, że zero jest liczbą parzystą.
8/ Ile jest liczb naturalnych trzycyfrowych, trzycyfrowych, których cyfra dziesiątek jest większa o 2 od cyfry jedności
angelika20590
Witam na forum
Witam na forum
 
Posty: 2
Dołączenie: 30 Mar 2009, 17:22
Otrzymane podziękowania: 0

Postprzez Kasienka » 31 Mar 2009, 20:45

zad.1.
P=ah/2
a=AB

[math]

P=12*5:2=30


zad.2.
Liczby 4, 10, c są długościami boków trójkąta równoramiennego. Oblicz c.
[math]
Skoro trójkąt ma być równoramienny to c=10.

zad.3.
Liczby 6, 10, c są długościami boków trójkąta równoramiennego. Oblicz c.
[math]
Skoro trójkąt ma być równoramienny to c=6 lub c=10.

zad.5.
Liczby x −1, x, 5 są długościami boków trójkąta równoramiennego. Oblicz x.
[math]
x>3
odp. x=5 lub x=6
Kasienka
Fachowiec
Fachowiec
 
Posty: 376
Dołączenie: 05 Sty 2009, 18:06
Otrzymane podziękowania: 0

Postprzez angelika20590 » 02 Kwi 2009, 14:52

Dziekuje bardzo za pomoc;)
angelika20590
Witam na forum
Witam na forum
 
Posty: 2
Dołączenie: 30 Mar 2009, 17:22
Otrzymane podziękowania: 0

Postprzez anka » 02 Kwi 2009, 17:34

4.
Liczby 6, 10, c
[math]

lub
[math]

lub
[math]<0 odrzucamy

[math]
Znasz odpowiedź do zadania, to ją podaj. Łatwiej będzie sprawdzić czy w rozwiązaniu zadania nie ma błędu.
Awatar użytkownika
anka
Expert
Expert
 
Posty: 6540
Dołączenie: 30 Sty 2009, 00:25
Płeć: Ona
Otrzymane podziękowania: 1100

Postprzez Kasienka » 02 Kwi 2009, 19:02

zad.6.
AB+BC+CD+DA=50
AB+BD+DA=46
BC+CD+DB=36

DB=?
BD=46-AB-DA
DB=36-BC-CD

AB+DA=50-CD-BC

DB=46-(50-CD-BC)
BC+CD=36-DB

DB=-4+CD+BC

DB=-4+36-DB
2DB=32
DB=16


zad.7.
z internetu:
a) na pierwszym miejscu jest nieparzysta, wówczas możemy ją wybrać na 5 sposobów, na pozostałe 3 miejsca możemy wybrać parzyste na 5*4*3=60 sposobów, czyli łącznie 300 sposobów

b) na pierwszy miejscu jest parzysta - nie może być tam zera, zatem pierwsze miejsce możemy wybrać na 4 sposoby, pozostałe dwie parzyste na 4*3 sposobów, nieparzystą na 5 sposobów oraz miejsce nieparzystej (druga, trzecia lub czwarta cyfra liczby) na 3 sposoby - łącznie 4*4*3*5*3=720

Razem 720+300=1020.


źródło:http://matematyka.pl/96202.htm

zad.8.
120,131,142,153,164,175,186,197
więc w każdej setce: 8
łącznie: 9x8=72
Kasienka
Fachowiec
Fachowiec
 
Posty: 376
Dołączenie: 05 Sty 2009, 18:06
Otrzymane podziękowania: 0


Powróć do Pomocy! - różne



Kto jest na forum

Użytkownicy przeglądający to forum: CommonCrawl [Bot] oraz 0 gości